CPS: Medium: Reconfigurable Aerial Power-Efficient Interconnected Imaging and Detection (RAPID) Cyber-Physical System
Lead PI:
Hamidreza Aghasi
Co-PI:
Abstract

A growing number of natural or man-made detrimental incidents occur every day, which mandate precise monitoring, control/management, and prevention. Otherwise, they can rapidly evolve to turn into unpredictable events with significant losses such as delays of automotive traffics jams, catastrophic devastation assuming lives of innocent citizens as in man-made incidents or explosions, financial and industrial losses as in the case of malfunction or defects in manufacturing plants, and loss of natural resources as in the case of droughts, wildfires, and floods. First responders are at the frontline of counteractions against these incidents with their safety being at a major risk, while the effectiveness and efficiency of their actions may also need improvement for complete closure of the event or prevention of its growth. To further assist the first responders and disallowing the damage due to an incident, this research proposes a cooperative network of unmanned aerial vehicles (UAVs) that are equipped with novel sensing and imaging technologies and can obtain critical information for the safe and more successful operation of first responders by sharing information with them in a short span of time. The UAVs can also assist the first responders by obtaining information from environments that are hard to access such as non-urban areas and environments with extreme conditions e.g., high temperature/elevation. 

The proposed research aims to investigate and realize a re-configurable, aerial, power-efficient, interconnected imaging, and detection (RAPID) CPS that can adaptively tune its configuration and performance (e.g., three-dimensional position of agents, spatial sensing resolution) with respect to the span of impacted area, feature size, and necessary resolution to monitor various incidents. To achieve these goals, three interrelated research thrusts with the following intellectual merits are pursued: (1) design and optimization of coordinated mobility strategies and control for the proposed CPS so as to maintain high-resolution sensing and connectivity of the drones; (2) design of an aerial communication network to realize cooperative sensing/communication and develop power-optimized rate-controllable wireless system per each UAV to exchange acquired image data between cyber and physical agents and track the position of UAVs in the network; and (3) design of a dual-mode sensing fusion embedded within a flying sensor agent comprising a novel low-power, high-resolution mm-wave imaging module to detect mobile/hidden objects and structural defects, and an infra-red (IR) thermal camera to detect high-temperature radiations.

Performance Period: 05/15/2023 - 04/30/2026
Institution: University of California-Irvine
Award Number: 2233783