Collaborative Research: CPS: Medium: Spatio-Temporal Logics for Analyzing and Querying Perception Systems
Lead PI:
'YZ' Yezhou Yang
Abstract

The goals of Automated Driving Systems (ADS) and Advanced Driver Assistance Systems (ADAS) include reduction in accidental deaths, enhanced mobility for differently abled people, and an overall improvement in the quality of life for the general public. Such systems typically operate in open and highly uncertain environments for which robust perception systems are essential. However, despite the tremendous theoretical and experimental progress in computer vision, machine learning, and sensor fusion, the form and conditions under which guarantees should be provided for perception components is still unclear. The state-of-the-art is to perform scenario-based evaluation of data against ground truth values, but this has only limited impact. The lack of formal metrics to analyze the quality of perception systems has already led to several catastrophic incidents and a plateau in ADS/ADAS development. This project develops formal languages for specifying and evaluating the quality and robustness of perception sub-systems within ADS and ADAS applications. To enable broader dissemination of this technology, the project develops graduate and undergraduate curricula to train engineers in the use of such methods, and new educational modules to explain the challenges in developing safe and robust ADS for outreach and public engagement activities. To broaden participation in computing, the investigators target the inclusion of undergraduate women in research and development phases through summer internships.

Performance Period: 01/01/2021 - 12/31/2024
Institution: Arizona State University
Sponsor: NSF
Award Number: 2038666