This project explores new mathematical techniques that provide a scientific basis to understand the fundamental properties of Cyber-Physical Systems (CPS) controlled by Artificial Intelligence (AI) and guide their design. From simple logical constructs to complex deep neural network models, AI agents are increasingly controlling physical/mechanical systems. Self-driving cars, drones, and smart cities are just examples of AI-controlled CPS. However, regardless of the explosion in the use of AI within a multitude of CPS domains, the safety and reliability of these AI-controlled CPS is still an under-studied problem. This project includes activities integrated with education, so as to explore how learning through counterexamples works for AI, and to help with critical thinking skills for young students.