This project will develop the theory and algorithmic tools for the design of provably-safe controllers that can leverage preview information from different sources. Many autonomous or semi-autonomous cyber-physical systems (CPS) are equipped with mechanisms that provide a window of projecting into the future. These mechanisms can be forward looking sensors like cameras (and corresponding perception algorithms), map information, forecast information, or more complicated predictive models of external agents learned from data. Through these mechanisms, at run-time, the systems have a preview of what lies ahead. Leveraging this information to improve performance of CPS while keeping strong guarantees on their safety, therefore, holds great promise for multiple technologies of national interest. We will use driver-assist systems in connected vehicles as the main application. Education and outreach activities will involve undergraduate and graduate students along with stakeholders from local automotive companies.
Abstract
Performance Period: 10/01/2022 - 12/31/2023
Institution: Northeastern University
Sponsor: NSF
Award Number: 2312007