This project investigates fundamental techniques for building mathematical models that can be safely used to make trustworthy predictions and control decisions. Mathematical models form the foundation for modern Cyber-Physical Systems (CPS). Examples include vehicle models that predict how a car will move when brakes are applied, or physiological models that predict how the blood glucose levels change in a patient with type-1 diabetes when insulin is administered. The success of machine learning tools has yielded data-driven models such as neural networks. However, depending on how data is collected and the models are learned, it is possible to obtain models that violate fundamental physical, chemical, or physiological facts that can potentially threaten life and property. The approach of the project is to expose these model flaws through advanced analysis. The project seeks to broaden participation in computing through mentoring activities that will encourage undergraduate women and members of underrepresented minority groups to consider a career in research.