Collaborative Research: CPS: Medium: Wildland Fire Observation, Management, and Evacuation using Intelligent Collaborative Flying and Ground Systems
Abstract

Increasing wildfire costs---a reflection of climate variability and development within wildlands---drive calls for new national capabilities to manage wildfires. The great potential of unmanned aerial systems (UAS) has not yet been fully utilized in this domain due to the lack of holistic, resilient, flexible, and cost-effective monitoring protocols. This project will develop UAS-based fire management strategies to use autonomous unmanned aerial vehicles (UAVs) in an optimal, efficient, and safe way to assist the first responders during the fire detection, management, and evacuation stages. The project is a collaborative effort between Northern Arizona University (NAU), Georgia Institute of Technology (GaTech), Desert Research Institute (DRI), and the National Center for Atmospheric Research (NCAR). The team has established ongoing collaborations with the U.S. Forest Service (USFS) in Pacific Northwest Research Station, Kaibab National Forest (NF), and Arizona Department of Forestry and Fire Management to perform multiple field tests during the prescribed and managed fires. This proposal's objective is to develop an integrated framework satisfying unmet wildland fire management needs, with key advances in scientific and engineering methods by using a network of low-cost and small autonomous UAVs along with ground vehicles during different stages of fire management operations including: (i) early detection in remote and forest areas using autonomous UAVs; (ii) fast active geo-mapping of the fire heat map on flying drones; (iii) real-time video streaming of the fire spread; and (iv) finding optimal evacuation paths using autonomous UAVs to guide the ground vehicles and firefighters for fast and safe evacuation.

This project will advance the frontier of disaster management by developing: (i) an innovative drone-based forest fire detection and monitoring technology for rapid intervention in hard-to-access areas with minimal human intervention to protect firefighter lives; (ii) multi-level fire modeling to offer strategic, event-scale, and new on-board, low-computation tactics using fast fire mapping from UAVs; and (iii) a bounded reasoning-based planning mechanism where the UAVs identify the fastest and safest evacuation roads for firefighters and fire-trucks in highly dynamic and uncertain dangerous zones. The developed technologies will be translational to a broad range of applications such as disaster (flooding, fire, mud slides, terrorism) management, where quick search, surveillance, and responses are required with limited human interventions. This project will also contribute to future engineering curricula and pursue a substantial integration of research and education while also engaging female and underrepresented minority students, developing hands-on research experiments for K-12 students.

This project is in response to the NSF Cyber-Physical Systems 20-563 solicitation.

Kyriakos G Vamvoudakis

Kyriakos G. Vamvoudakis was born in Athens, Greece. He earned his Diploma in Electronic and Computer Engineering (equivalent to a Master of Science) from the Technical University of Crete, Greece, in 2006, graduating with highest honors. After relocating to the United States, he pursued further studies at The University of Texas at Arlington under the guidance of Frank L. Lewis, obtaining his M.S. and Ph.D. in Electrical Engineering in 2008 and 2011, respectively. From May 2011 to January 2012, he served as an Adjunct Professor and Faculty Research Associate at the University of Texas at Arlington and the Automation and Robotics Research Institute. Between 2012 and 2016, he was a project research scientist at the Center for Control, Dynamical Systems, and Computation at the University of California, Santa Barbara. He then joined the Kevin T. Crofton Department of Aerospace and Ocean Engineering at Virginia Tech as an assistant professor, a position he held until 2018.

He currently serves as the Dutton-Ducoffe Endowed Professor at The Daniel Guggenheim School of Aerospace Engineering at Georgia Tech. He holds a secondary appointment in the School of Electrical and Computer Engineering. His expertise is in reinforcement learning, control theory, game theory, cyber-physical security, bounded rationality, and safe/assured autonomy. 

He has received numerous prestigious awards, including the 2019 ARO YIP Award, the 2018 NSF CAREER Award, the 2018 DoD Minerva Research Initiative Award, and the 2021 GT Chapter Sigma Xi Young Faculty Award. His work has also been recognized with several best paper nominations and international awards, such as the 2016 International Neural Network Society Young Investigator (INNS) Award, the Best Paper Award for Autonomous/Unmanned Vehicles at the 27th Army Science Conference in 2010, the Best Presentation Award at the World Congress of Computational Intelligence in 2010, and the Best Researcher Award from the Automation and Robotics Research Institute in 2011. Dr. Vamvoudakis has served on various international program committees and has organized special sessions, workshops, and tutorials for several international conferences. He is the Editor-in-Chief of Aerospace Science and Technology and currently serves on the IEEE Control Systems Society Conference Editorial Board. Additionally, he is an Associate Editor for several journals, including Automatica, IEEE Transactions on Automatic Control, IEEE Transactions on Neural Networks and Learning Systems, IEEE Transactions on Systems, Man, and Cybernetics: Systems, IEEE Transactions on Artificial Intelligence, Neural Networks, and the Journal of Optimization Theory and Applications. He is also a Senior Guest Editor for the IEEE Open Journal of Control Systems for the special issue on the intersection of machine learning with control. Previously, Dr. Vamvoudakis has served as a Guest Editor for various special issues, including those in IEEE Transactions on Automation Science and Engineering, IEEE Transactions on Neural Networks and Learning Systems, IEEE Transactions on Industrial Informatics, and IEEE Transactions on Intelligent Transportation Systems. He is a registered Professional Engineer (PE) in Electrical/Computer Engineering, a member of the Technical Chamber of Greece, an Associate Fellow of AIAA, and a Senior Member of IEEE.

Performance Period: 05/01/2021 - 04/30/2024
Institution: Georgia Institute of Technology
Sponsor: National Science Foundation
Award Number: 2038589