Visible to the public CPS: Small: Programming Environment and Architecture for Situational Awareness and Response

Project Details
Lead PI:Robert Fowler
Performance Period:09/01/09 - 06/30/14
Institution(s):University of North Carolina at Chapel Hill
Sponsor(s):National Science Foundation
Award Number:0932011
2263 Reads. Placed 73 out of 803 NSF CPS Projects based on total reads on all related artifacts.
Abstract: The objective of this research is to investigate and implement a software architecture to improve productivity in the development of rapidly deployable, robust, real-time situational awareness and response applications. The approach is based on a modular cross-layered architecture that combines a data-centric descriptive programming model with an overlay-based communication model. The cross-layer architecture will promote an efficient implementation. Simultaneously, the data-centric programming model and overlay-based communication model will promote a robust implementation that can take advantage of heterogeneous resources and respond to different failures. There is currently no high-level software architecture that meets the stringent requirements of many situational awareness and response applications. The proposed project will fill this void by developing a novel data-centric programming model that spans devices with varying computational and communication capabilities. Similarly, the overlay communication model will extend existing work by integrating network resources with the programming model. This cross-layer design will promote the implementation of efficient and robust applications. This research will benefit society by providing emergency responders with software tools that present key information in a timely fashion. This, in turn, will increase safety and reduce economic and human loss during emergencies. The productivity gains in deploying sensors and mobile devices will benefit other domains, such as field research using sensor networks. Software will be released under an open-source license to promote the use by government agencies, research institutions, and individuals. Products of this research, including the software, will be used in courses at the University of North Carolina.