Reinforcement learning


Visible to the public Reinforcement Learning Algorithms for CPS: The Open-Source TEXPLORE Code Release for Reinforcement Learning on Robots


The use of robots in society could be expanded by using reinforcement learning (RL) to allow robots to learn and adapt to new situations on-line. RL is a paradigm for learning sequential decision making tasks, usually formulated as a Markov Decision Process (MDP). For an RL algorithm to be practical for robotic control tasks, it must learn in very few samples, while continually taking actions in real-time. In addition, the algorithm must learn efficiently in the face of noise, sensor/actuator delays, and continuous state features.