Designing and managing complex engineering projects over their life cycles.
The objective of this research is to study the formal design and verification of advanced vehicle dynamics control systems. The approach is to consider the vehicle-driver-road system as a cyber-physical system (CPS) by focusing on three critical components: (i) the tire-road interaction; (ii) the driver-vehicle interaction; and (iii) the controller design and validation. Methods for quantifying and estimating the uncertainty of the road friction coefficient by using self-powered wireless sensors embedded in the tire are developed for considering tire-road interaction. Tools for real-time identification of nominal driver behavior and uncertainty bounds by using in-vehicle cameras and body wireless sensors are developed for considering driver-vehicle interaction. A predictive hybrid supervisory control scheme will guarantee that the vehicle performs safely for all possible uncertainty levels. In particular, for controller design and validation, the CPS autonomy level is continuously adapted as a function of human and environment conditions and their uncertainty bounds quantified by considering tire-road and driver-vehicle interaction. High confidence is critical in all human operated and supervised cyber-physical systems. These include environmental monitoring, telesurgery, power networks, and any transportation CPS. When human and environment uncertainty bounds can be predicted, safety can be robustly guaranteed by a proper controller design and validation. This avoids lengthy and expensive trial and error design procedures and drastically increases their confidence level. Graduate, undergraduate and underrepresented engineering students benefit from this project through classroom instruction, involvement in the research and substantial interaction with industrial partners from the fields of tires, vehicle active safety, and wireless sensors.
Off
J. Karl Hedrick
Ruzena Bajcsy
University of California-Berkeley
Francesco Borrelli
-
National Science Foundation
Borrelli, Francesco
Submitted by Francesco Borrelli on April 7th, 2011
This objective of this proposal is to improve the management of the air traffic system, a cyber-physical system where the need for a tight connection between the computational algorithms and the physical system is critical to safe, reliable and efficient performance. The approach is based on an adaptive multi-agent coordination algorithm with a particular emphasis on the systematic selection of the agents, their actions and the agents' reward functions. The intellectual merit lies in addressing the agent coordination problem in a physical setting by shifting the focus from ``how to learn" to ``what to learn." This paradigm shift allows a separation between the learning algorithms used by agents, and the reward functions used to tie those learning systems into system performance. By exploring agent reward functions that implicitly model agent interactions based on feedback from the real world, this work aims to build cyber-physical systems where an agent that learns to optimize its own reward leads to the optimization of the system objective function. The broader impact is in providing new air traffic flow management algorithms that will significantly reduce air traffic congestion. The potential impact cannot only be measured in currency ($41B loss in 2007) but in terms of improved experience by all travelers, providing a significant benefit to society. In addition, the PIs will use this project to train graduate and undergraduate students (i) by developing new courses in multi-agent learning for transportation systems; and (ii) by providing summer internship opportunities at NASA Ames Research Center.
Off
University of California-Santa Cruz
Adrian Agogino
-
National Science Foundation
Agogino, Adrian
Submitted by Adrian Agogino on April 7th, 2011
Feedback
Feedback
If you experience a bug or would like to see an addition or change on the current page, feel free to leave us a message.