Many cyber-physical systems (CPS) have real-time (RT) requirements. For these RT-CPS, such as a network of unmanned aerial vehicles that deliver packages to customers? homes or a robot that performs/aides in cardiac surgery, deadline misses may result in economic losses or even fatal consequences. At the same time, as these RT-CPS interact with, and are depended on by, humans, they must also be trustworthy. The goal of this research is to design secure RT-CPS that are less complex, easier to analyze, and reliable for critical application domains such as defense, medicine, transportation, manufacturing, and agriculture, to name just a few. Since RT-CPS now permeate most aspects of our daily lives, especially in the smart city and internet-of-things (IoT) context, this research will improve confidence in automated systems by users. Research results will be disseminated to both academia and industry, and permit timely adoption since the hardware required in this research is already publicly available. This project will result in a pipeline of engineers and computer scientists who are well-versed in the interdisciplinary nature of securing RT-CPS, as well as course modules and red-teaming exercises for undergraduate students in all engineering disciplines and interactive learning modules and internship experience for K-12 students in D.C., Detroit, Dallas, and St. Louis.
Off
Virginia Polytechnic Institute and State University
-
NSF
Submitted by Frankie King on November 9th, 2023