Applications of CPS technologies essential for the functioning of a society and economy.
Event
SOCNE 2016
CALL FOR PAPERS - Submission deadline May 20, 2016 Workshop on Service-Oriented Cyber-Physical Systems in Converging Networked Environments (SOCNE 2016)  in conjunction with ETFA 2016 Berlin, Germany |  23-27,September 06-09, 2016 | http://www.socne.org Selected Topics
Submitted by Anonymous on May 9th, 2016

CPSE Labs: Funding opportunity for engineering and technology businesses and research institutions.

A new European initiative provides a unique opportunity for technology businesses to win funding for innovation activities.  Organizations can apply for up to €150,000 to fund an industrial experiment, and successful applications will also receive technical support from one of Europe's top research centres.

To apply, engineering and technology businesses should describe an industrial experiment they would like to carry out and submit it before the 22nd June deadline.  Proposals should be in "cyber-physical systems" (CPSs).  These are systems that include computational elements as well as interaction with the physical world (e.g., through actuators and/or sensors).  Many firms working in ICT, IoT, embedded systems or engineering will find they are eligible to apply for funding and support.  Relevant application areas are wide-ranging and include: adaptive production systems; urban sustainability; smart cities; autonomous vehicles; and maritime engineering. 

This opportunity is created by the EU-funded CPSE Labs project, which aims to support Europe's innovators.  The project has brought together nine of Europe's top design & research labs, into a pan-European network spanning five countries.  Each funded experiment will be partnered with a research centre, to equip successful applicants with infrastructure, knowledge, and tools needed to support rapid development of innovative CPS products and services.

Detailed information about the Open Call is available on the CPSE Labs website: www.cpse-labs.eu/calls.php

General Announcement
Not in Slideshow
Submitted by Anonymous on May 9th, 2016
Event
MSWiM 2016
19th ACM*/IEEE*  19th Annual International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM 2016) *Pending Upon Approval
Submitted by Anonymous on April 27th, 2016
Event
FISP 2016
The Second  International Workshop on Future Information Security, Privacy and Forensics for Complex systems (FISP 2016) In Conjunction with the 11th International Conference on Future Networks and Communications (FNC'16)  Topics of Interest: 
Submitted by Anonymous on April 26th, 2016
Event
IOTNAT 2016
The Second International Workshop on Internet of Things: Networking Applications and Technologies (IOTNAT 2016) In Conjunction with the 11th International Conference on Future Networks and Communications (FNC'16) Topics of Interests:
Submitted by Anonymous on April 26th, 2016
The evolution of manufacturing systems from loose collections of cyber and physical components into true cyber-physical systems has expanded the opportunities for cyber-attacks against manufacturing. To ensure the continued production of high-quality parts in this new environment requires the development of novel security tools that transcend both the cyber and physical worlds. Potential cyber-attacks can cause undetectable changes in a manufacturing system that can adversely affect the product's design intent, performance, quality, or perceived quality. The result of this could be financially devastating by delaying a product's launch, ruining equipment, increasing warranty costs, or losing customer trust. More importantly, these attacks pose a risk to human safety, as operators and consumers could be using faulty equipment/products. New methods for detecting and diagnosing cyber-physical attacks will be studied and evaluated through our established industrial partners. The expected results of this project will contribute significantly in further securing our nation's manufacturing infrastructure. This project establishes a new vision for manufacturing cyber-security based upon modeling and understanding the correlation between cyber events that occur in a product/process development-cycle and the physical data generated during manufacturing. Specifically, the proposed research will take advantage of this correlation to characterize the relationships between cyber-attacks, process data, product quality observations, and side-channel impacts for the purpose of attack detection and diagnosis. These process characterizations will be coupled with new manufacturing specific cyber-attack taxonomies to provide a comprehensive understanding of attack surfaces for advanced manufacturing systems and their cyber-physical manifestations in manufacturing processes. This is a fundamental missing element in the manufacturing cyber-security body of knowledge. Finally, new forensic techniques, based on constraint optimization and machine learning, will be researched to differentiate process changes indicative of cyber-attacks from common variations in manufacturing due to inherent system variability.
Off
Vanderbilt University
-
National Science Foundation
Submitted by Christopher White on April 25th, 2016
Strategic decision-making for physical-world infrastructures is rapidly transitioning toward a pervasively cyber-enabled paradigm, in which human stakeholders and automation leverage the cyber-infrastructure at large (including on-line data sources, cloud computing, and handheld devices). This changing paradigm is leading to tight coupling of the cyber- infrastructure with multiple physical- world infrastructures, including air transportation and electric power systems. These management-coupled cyber- and physical- infrastructures (MCCPIs) are subject to complex threats from natural and sentient adversaries, which can enact complex propagative impacts across networked physical-, cyber-, and human elements. We propose here to develop a modeling framework and tool suite for threat assessment for MCCPIs. The proposed modeling framework for MCCPIs has three aspects: 1) a tractable moment-linear modeling paradigm for the hybrid, stochastic, and multi-layer dynamics of MCCPIs; 2) models for sentient and natural adversaries, that capture their measurement and actuation capabilities in the cyber- and physical- worlds, intelligence, and trust-level; and 3) formal definitions for information security and vulnerability. The attendant tool suite will provide situational awareness of the propagative impacts of threats. Specifically, three functionalities termed Target, Feature, and Defend will be developed, which exploit topological characteristics of an MCCPI to evaluate and mitigate threat impacts. We will then pursue analyses that tie special infrastructure-network features to security/vulnerability. As a central case study, the framework and tools will be used for threat assessment and risk analysis of strategic air traffic management. Three canonical types of threats will be addressed: environmental-to-physical threats, cyber-physical co-threats, and human-in-the-loop threats. This case study will include development and deployment of software decision aids for managing man-made disturbances to the air traffic system.
Off
University of North Texas
-
National Science Foundation
Yan Wan Submitted by Yan Wan on April 25th, 2016
The automotive industry finds itself at a cross-roads. Current advances in MEMS sensor technology, the emergence of embedded control software, the rapid progress in computer technology, digital image processing, machine learning and control algorithms, along with an ever increasing investment in vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) technologies, are about to revolutionize the way we use vehicles and commute in everyday life. Automotive active safety systems, in particular, have been used with enormous success in the past 50 years and have helped keep traffic accidents in check. Still, more than 30,000 deaths and 2,000,000 injuries occur each year in the US alone, and many more worldwide. The impact of traffic accidents on the economy is estimated to be as high as $300B/yr in the US alone. Further improvement in terms of driving safety (and comfort) necessitates that the next generation of active safety systems are more proactive (as opposed to reactive) and can comprehend and interpret driver intent. Future active safety systems will have to account for the diversity of drivers' skills, the behavior of drivers in traffic, and the overall traffic conditions. This research aims at improving the current capabilities of automotive active safety control systems (ASCS) by taking into account the interactions between the driver, the vehicle, the ASCS and the environment. Beyond solving a fundamental problem in automotive industry, this research will have ramifications in other cyber-physical domains, where humans manually control vehicles or equipment including: flying, operation of heavy machinery, mining, tele-robotics, and robotic medicine. Making autonomous/automated systems that feel and behave "naturally" to human operators is not always easy. As these systems and machines participate more in everyday interactions with humans, the need to make them operate in a predictable manner is more urgent than ever. To achieve the goals of the proposed research, this project will use the estimation of the driver's cognitive state to adapt the ASCS accordingly, in order to achieve a seamless operation with the driver. Specifically, new methodologies will be developed to infer long-term and short-term behavior of drivers via the use of Bayesian networks and neuromorphic algorithms to estimate the driver's skills and current state of attention from eye movement data, together with dynamic motion cues obtained from steering and pedal inputs. This information will be injected into the ASCS operation in order to enhance its performance by taking advantage of recent results from the theory of adaptive and real-time, model-predictive optimal control. The correct level of autonomy and workload distribution between the driver and ASCS will ensure that no conflicts arise between the driver and the control system, and the safety and passenger comfort are not compromised. A comprehensive plan will be used to test and validate the developed theory by collecting measurements from several human subjects while operating a virtual reality-driving simulator.
Off
Georgia Institute of Technology
-
National Science Foundation
Karen Feigh
Submitted by Panagiotis Tsiotras on April 25th, 2016
In the United States, there is still a great disparity in medical care and most profoundly for emergency care, where limited facilities and remote location play a central role. Based on the Wessels Living History Farm report, the doctor to patient ratio in the United States is 30 to 10,000 in large metropolitan areas, only 5 to 10,000 in most rural areas; and the highest death rates are often found in the most rural counties. For emergency patient care, time to definitive treatment is critical. However, deciding the most effective care for an acute patient requires knowledge and experience. Though medical best practice guidelines exist and are in hospital handbooks, they are often lengthy and difficult to apply clinically. The challenges are exaggerated for doctors in rural areas and emergency medical technicians (EMT) during patient transport. This project's solution to transform emergency care at rural hospitals is to use innovative CPS technologies to help hospitals to improve their adherence to medical best practice. The key to assist medical staff with different levels of experience and skills to adhere to medical best practice is to transform required processes described in medical texts to an executable, adaptive, and distributed medical best practice guidance (EMBG) system. Compared to the computerized sepsis best practice protocol, the EMBG system faces a much bigger challenge as it has to adapt the best practice across rural hospitals, ambulances and center hospitals with different levels of staff expertise and equipment capabilities. Using a Global Positioning System analogy, a GPS leads drivers with different route familiarity to their destination through an optimal route based on the drivers' preferences, the EMBG system leads medical personnel to follow the best medical guideline path to provide emergency care and minimize the time to definitive treatment for acute patients. The project makes the following contributions: 1) The codification of complex medical knowledge is an important advancement in knowledge capture and representation; 2) Pathophysiological model driven communication in high speed ambulance advances life critical communication technology; and 3) Reduced complexity software architectures designed for formal verification bridges the gap between formal method research and system engineering.
Off
University of Illinois at Urbana-Champaign
-
National Science Foundation
Submitted by Lui Sha on April 12th, 2016
Additive Manufacturing holds the promise of revolutionizing manufacturing. One important trend is the emergence of cyber additive manufacturing communities for innovative design and fabrication. However, due to variations in materials and processes, design and computational algorithms currently have limited adaptability and scalability across different additive manufacturing systems. This award will establish the scientific foundation and engineering principles needed to achieve adaptability, extensibility, and system scalability in cyber-physical additive manufacturing systems, resulting in high efficiency and accuracy fabrication. The research will facilitate the evolution of existing isolated and loosely-connected additive manufacturing facilities into fully functioning cyber-physical additive manufacturing systems with increased capabilities. The application-based, smart interfacing infrastructure will complement existing cyber additive communities and enhance partnerships between academia, industry, and the general public. The research will contribute to the technology and engineering of Cyber-physical Systems and the economic competitiveness of US manufacturing. This interdisciplinary research will generate new curricular materials and help educate a new generation of cybermanufacturing workforce. The research will establish smart and dynamic system calibration methods and algorithms through deep learning that will enable high-confidence and interoperable cyber-physical additive manufacturing systems. The dynamic calibration and re-calibration algorithms will provide a smart interfacing layer of infrastructure between design models and physical additive manufacturing systems. Specific research tasks include: (1) Establishing smart and fast calibration algorithms to make physical additive manufacturing machines adaptable to design models; (2) Deriving prescriptive compensation algorithms to achieve extensible design models; (3) Dynamic recalibration through deep learning for improved predictive modeling and compensation; and (4) Developing a smart calibration server and APP prototype test bed for scalable additive cyberinfractures.
Off
Purdue University
-
National Science Foundation
Submitted by Arman Sabbaghi on April 12th, 2016
Subscribe to Critical Infrastructure