Applications of CPS technologies involving the power generation and/or energy conservation.

Dr. S. Shyam Sunder, Director, Engineering Laboratory of the National Institute for Standards and Technology (NIST) has made the following announcement rearding the new leadership team for the NIST Smart Grid and Cyber-Physical Systems Program Office and the three new Presidential Innovation Fellows who are joining NIST (two for CPS and one for Smart Grid, a key CPS sector): 

From left to right: Sokwoo Rhee, S. Shyam Sunder, John Teeter, Geoff Mulligan

Submitted by Anonymous on June 27th, 2013
Event
PATMOS 2013
The International Workshop on Power and Timing Modeling, Optimization and Simulation (PATMOS) 2013 is the 23nd in a series of international workshops. The PATMOS meeting has evolved into a leading scientific event where industry and academia meet to discuss power and timing aspects in modern integrated circuit and system design. Both Universities and Companies are invited to participate.
Submitted by Anonymous on April 19th, 2013
Event
SASO 2013
  Seventh IEEE International Conference on Self-Adaptive and Self-Organizing Systems Philadelphia, USA; September 9-13, 2013   The 2013 edition of the Self-Adaptive and Self-Organizing systems conference (SASO) will be held in Philadelphia, PA, USA, and hosted by Drexel University, in the week of September 9-13, 2013.
Submitted by Anonymous on April 19th, 2013
The 2nd Mediterranean Conference on Embedded Computing (MECO 2013) is a continuation of very successful MECO-2012 event. It is an International Scientific Forum aimed to present and discuss the leading achievements in the modeling, analysis, design, validation and application of embedded computing systems. MECO 2013 will provide an opportunity for scientists, engineers and researchers to discuss new applications, design problems, ideas, solutions, research and development results, experiences and work-in-progress in this important technological area. 
Submitted by Anonymous on April 4th, 2013
Event
CPSNA 2013
The 1st IEEE International Conference on Cyber-Physical Systems, Networks, and Applications Overview
Amy Karns Submitted by Amy Karns on April 4th, 2013
The 25th EUROMICRO Con
Amy Karns Submitted by Amy Karns on April 4th, 2013
Traditionally, buildings have been viewed as mere energy consumers; however, with the new power grid infrastructure and distributed energy resources, buildings can not only consume energy, but they can also output energy. As a result, this project removes traditional boundaries between buildings in the same cluster or between the cluster and power grids, transforming individual smart buildings into NetZero building clusters enabled by cyber-support tools. In this research, a synergistic decision framework is established for temporally, spatially distributed building clusters to work as an adaptive and robust system within a smart grid. The framework includes innovative algorithms and tools for building energy modeling, intelligent data fusion, decentralized decisions and adaptive decisions to address theoretical and practical challenges in next-generation building systems. The research develops cyber-physical engineering tools for demand side load management which has been identified as a major challenge by energy industries. It fundamentally transforms the current centralized and uni-directional power distribution business model to a decentralized and multi-directional power sharing and distribution business model, reducing overall energy consumption and allowing for optimal decisions in changing operation environments. Education and outreach efforts include developing novel educational modules disseminated at the K-12 levels and through the ASEE eGFI repository. Further educational impact occurs through integration with multiple undergraduate and graduate courses at each institution, and with community service groups. Impact is also expanded to the broader energy industry and the operation of healthcare delivery and urban transportation systems through our industry collaborations.
Off
Arizona State University
-
National Science Foundation
Tong (Teresa) Wu
Teresa Wu Submitted by Teresa Wu on December 11th, 2012
This project develops an integrated framework of communications, computation and control for understanding wide-area power system performance in the face of unpredictable disturbances. The power system is chosen as a particularly challenging cyber physical system (CPS) due to its extreme dimension, geographic reach and high reliability requirements. The following tasks are studied in the proposed research: (a) a Partial Difference Equation (PdE) framework to model the impact of network topology on the power system stability; (b) the design of a communication network for CPS, based on the PdE modeling;(c) the design of a control system, which addresses the challenges such as fast response and resource constraints; (d) the design of a computing infrastructure, which addresses the computation for controlling the power network, in particular, the communication complexity for controlling the power network in both cases of one-snapshot computation and iterative computations; and (e) the test and evaluation for both small scale system models of several hundred buses and very large system models of ~50,000 buses. This work contributes to the broader understanding of CPS with high reliability requirements, particularly, critical infrastructures such as the power grid. Modern infrastructures are complex systems of communications and computation tied to the controls of the physical system. The proposed research contributes to improved reliability by addressing the propagation of disturbances and advancing the understanding of geographically distributed CPS. The PIs plan to open multiple courses on CPS related to the proposed research.
Off
University of Tennessee Knoxville
-
National Science Foundation
Kevin Tomsovic
Kevin Tomsovic Submitted by Kevin Tomsovic on December 11th, 2012
Data-driven intelligence is an essential foundation for physical systems in transportation safety and efficiency, area surveillance and security, as well as environmental sustainability. This project develops new computer system infrastructure and algorithms for self-sustainable data-driven systems in the field. Research outcomes of the project include (a) a low-maintenance, environmentally-friendly hardware platform with solar energy harvesting and super capacitor-based energy storage, (b) virtualization software infrastructure for low-power nodes to enable inter-operability among distributed field nodes and from/to the data center, and (c) new image and data processing approaches for resource-adaptive fidelity adjustment and function partitioning. The synergy between the self-sustainable hardware, system software support, wireless communications management, and application data processing manifests through global coordination for quality-of-service, energy efficiency, and data privacy. In broader impacts, this project enables data-driven intelligence in the field for important physical system domains. Integration of the technologies involved is accomplished through real-world system deployment and experimentation, including an intelligent campus traffic and parking management system and collaborative work with industry collaborators. The results of this project will further enhance the technological competitiveness for US industries in key areas such as intelligent transportation. The education component includes cross-disciplinary curriculum enhancements and the development of a new instructional platform for realistic experiments with cyber-physical systems. Within the scope of this project, the PIs perform mentoring and outreach activities to recruit/retain women and minorities in science and engineering.
Off
University of Rochester
-
National Science Foundation
Kai Shen
Kai Shen Submitted by Kai Shen on December 11th, 2012
Energy infrastructure is a critical underpinning of modern society. To ensure its reliable operation, a nation-wide or continent-wide situational awareness system is essential to provide high-resolution understanding of the system dynamics such that proper actions can be taken in real-time in response to power system disturbances and to avoid cascading blackouts. The power grid represents a typical highly dynamic cyber-physical system (CPS). The ever-increasing complexity and scale in sensing and actuation, compounded by the limited knowledge of the accurate system state have resulted in major system failures, such as the massive power blackout of August 2003 and the most recent Arizona/California blackout of September 2011. Therefore, methods and tools for monitoring and control of these and other such dynamic systems at high resolution are vital to an emergent generation of tightly coupled, physically distributed CPS. This project employs the power grid as a target application and develops a high-resolution, ultra-wide-area situational awareness system that synergistically integrates sensing, processing, and actuation. First, from the sensing perspective, high resolution is reflected in both measurement accuracy and potential for dense spatial coverage. Wide area, precise, synchronized, and affordable sensing in voltage angle and frequency measurements for large-scale observation is sorely needed to observe system disturbances and capture critical changes in the power grid. The crucial innovation of this work is to make accurate frequency measurement from low voltage distribution systems through the wide deployment of Frequency Disturbance Recorders (FDRs). Second, from a data processing perspective, high resolution is reflected in finer-scale data analysis to reveal hidden information. In practical CPS, events seldom occur in an isolated fashion; cascading events are more common and realistic. A new conceptual framework is presented in the study of event analysis, referred to as event unmixing, where real-world events are considered a mixture of more than one constituent root event. This concept is a key enabler for the analysis of events to go beyond what are immediately detectable in the system. The event formation process is interpreted from a linear mixing perspective and innovative sparsity-constrained unmixing algorithms are presented for multiple event separation and spatial-temporal localization. Third, to discover the high-level spatial-temporal correlation among root events in real time, a descriptive language is developed to discover patterns on the spatial and temporal information of root events. This descriptive language allows embedding pattern descriptions on the desirable and undesirable interactions between events in the system, which will then be compiled into distributed runtime constructs to be executed in deployed systems. Fourth, from the actuation perspective, the system pushes the intelligence toward the lower level of the power grid allowing local devices to make decisions and to react quickly to contingencies based on the high-resolution understanding of the system state, enabling a more direct reconfiguration of the physical makeup of the grid. Finally, the methods and tools are implemented and validated on an existing wide-area power grid monitoring system, the North American frequency monitoring network (FNET). Escalating demands for electricity coupled with an outdated power transmission grid pose a serious threat to the US economy. The transformative nature of this research is to turn a large volume of real-time data into actionable information and help prevent potential outages from happening. The power grid is a typical example of dynamic cyber physical system. Providing high-resolution situational awareness for the power grid has a direct and immediate impact on this and other CPS. The research is coupled with a strong educational component including active recruitment of students from underrepresented groups supported by existing programs and broad dissemination of research findings.
Off
University of Tennessee Knoxville
-
National Science Foundation
Hairong Qi
Hairong Qi Submitted by Hairong Qi on December 11th, 2012
Subscribe to Energy