Applications of CPS technologies dealing with automated machines that can take the place of humans in dangerous environments or manufacturing processes, or resemble humans in appearance, behavior, and/or cognition.
Event
WAT 2018
The Second Workshop on Adaptive Technology (WAT 2018) is a development of a 10+ years national event held at University of São Paulo (Brazil) called WTA. It aims to provide a proper forum to discuss adaptivity both on theory and application. It is expected the presentation of high-quality, original research covering all aspects of adaptivity, its methodologies, design, analysis, implementation, verification, and case-studies. Original papers that embraces new and emerging research ideas about adaptivity are also welcome.
Submitted by Anonymous on November 20th, 2017
Intelligent Systems Conference (IntelliSys) 2018 - Call for Papers Technically Co-Sponsored by IEEE IntelliSys 2018 will focus in areas of intelligent systems and artificial intelligence and how it applies to the real world. IntelliSys provides a leading international forum that brings together researchers and practitioners from diverse fields with the purpose of exploring the fundamental roles, interactions as well as practical impacts of Artificial Intelligence. It is part of the conference series started in 2013.
Submitted by Anonymous on November 15th, 2017
Event
AAMAS 18
International Conference on Autonomous Agents and Multiagent Systems (AAMAS-18) AAMAS is the leading scientific conference for research in autonomous agents and multiagent systems. The AAMAS conference series was initiated in 2002 by merging three highly respected meetings: the International Conference on Multi-Agent Systems (ICMAS); the International Workshop on Agent Theories, Architectures, and Languages (ATAL); and the International Conference on Autonomous Agents (AA).
Submitted by Anonymous on November 8th, 2017
As multi-agent systems become ubiquitous, the ability to satisfy multiple system-level constraints in these systems grows increasingly important. In applications ranging from automated cruise control to safety in robot swarms, barrier functions have emerged as a tool to provably meet such constraints by guaranteeing forward invariance of a set. However, satisfying multiple constraints typically implies formulating multiple barrier functions, bringing up the need to address the degree to which multiple barrier functions may be composed through Boolean logic.
Jorge Cortes Submitted by Jorge Cortes on October 13th, 2017
This paper proposes an event-triggered interactive gradient descent method for solving multi-objective optimization problems. We consider scenarios where a human decision maker works with a robot in a supervisory manner in order to find the best Pareto solution to an optimization problem. The human has a time-invariant function that represents the value she gives to the different outcomes. However, this function is implicit, meaning that the human does not know it in closed form, but can respond to queries about it.
Jorge Cortes Submitted by Jorge Cortes on October 13th, 2017
Event
ARCS 2018
CALL FOR PAPERS, WORKSHOPS, & TUTORIALS 31st International Conference on Architecture of Computing Systems (ARC 2018) April 09 -12, 2018 | Braunschweig, Germany at the Technical University of Braunschweig | http://arcs2018.itec.kit.edu/
Submitted by Anonymous on October 5th, 2017
Equipment operation represents one of the most dangerous tasks on a construction sites and accidents related to such operation often result in death and property damage on the construction site and the surrounding area. Such accidents can also cause considerable delays and disruption, and negatively impact the efficiency of operations. This award will conduct research to improve the safety and efficiency of cranes by integrating advances in robotics, computer vision, and construction management. It will create tools for quick and easy planning of crane operations and incorporate them into a safe and efficient system that can monitor a crane's environment and provide control feedback to the crane and the operator. Resulting gains in safety and efficiency wil reduce fatal and non-fatal crane accidents. Partnerships with industry will also ensure that these advances have a positive impact on construction practice, and can be extended broadly to smart infrastructure, intelligent manufacturing, surveillance, traffic monitoring, and other application areas. The research will involve undergraduates and includes outreach to K-12 students. The work is driven by the hypothesis that the monitoring and control of cranes can be performed autonomously using robotics and computer vision algorithms, and that detailed and continuous monitoring and control feedback can lead to improved planning and simulation of equipment operations. It will particularly focus on developing methods for (a) planning construction operations while accounting for safety hazards through simulation; (b) estimating and providing analytics on the state of the equipment; (c) monitoring equipment surrounding the crane operating environment, including detection of safety hazards, and proximity analysis to dynamic resources including materials, equipment, and workers; (d) controlling crane stability in real-time; and (e) providing feedback to the user and equipment operators in a "transparent cockpit" using visual and haptic cues. It will address the underlying research challenges by improving the efficiency and reliability of planning through failure effects analysis and creating methods for contact state estimation and equilibrium analysis; improving monitoring through model-driven and real-time 3D reconstruction techniques, context-driven object recognition, and forecasting motion trajectories of objects; enhancing reliability of control through dynamic crane models, measures of instability, and algorithms for finding optimal controls; and, finally, improving efficiency of feedback loops through methods for providing visual and haptic cues.
Off
University of Florida
-
National Science Foundation
Submitted by Chinemelu Anumba on October 3rd, 2017
The age of autonomous mobile systems is dawning -- from autonomous cars to household robots to aerial drones -- and they are expected to transform multiple industries and have significant impact on the US economy. Through wireless coordination, these systems create a whole that is greater than the sum of its parts. For example, vehicle "platoons" increase both highway throughput and fuel efficiency by traveling nearly bumper-to-bumper, using a wireless coupling to brake and accelerate simultaneously. Similarly, vehicles or drones can speed around blind corners using the sensing capabilities of the agents ahead of them. However, wireless communication is still considered too unreliable for safety-critical operations like these. This research is creating new techniques for safe wirelessly coordinated mobility, which is becoming increasingly important with the proliferation of autonomous mobile systems. The approach is to develop a framework for joint modeling and analysis of motion and communication in order to find provably safe coordination paths. This includes new models that can predict the effect of motion paths on the wireless channel, together with new formal methods that can use these models in a tractable manner to synthesize control strategies with provable guarantees. The key innovations include new methods to assess the validity of a Radio Frequency model, new methods for tractable probabilistic reasoning over complex models of the wireless channel and protocols, and new control strategies that achieve provable safety guarantees for states that would have been unsafe without wireless coordination. If successful, this research will allow mobile systems to realize the performance benefits of wireless coordination while preserving the ability to provide provable safety guarantees. The focus is not on improving the wireless channel reliability; instead, the aim is to provide safety guarantees on the entire mobile system by modeling and analyzing the channel's dynamic properties in a rapidly changing environment.
Off
University of Virginia
-
National Science Foundation
Cody Fleming
Submitted by Cameron Whitehouse on October 2nd, 2017
Human-robot teams engaged in transportation and data collection will often share a common physical workspace. This project will investigate fundamental challenges in human-cyberphysical-systems (h-CPS) for cooperative aerial payload transport. First, Unmanned Aerial Vehicles (UAVs) cooperatively lift and carry a payload through a cluttered environment under uncertain winds. The multi-UAV system (MUS) functions autonomously to allow human companions to focus attention on their environment while interacting with the MUS. We propose a novel interface where an operator pushes on the slung payload to guide the team and coordinates the mission through a networked tablet. A novel cooperative control strategy safely guides the MUS while physics-based algorithms distinguish human inputs from environmental disturbances. Flight tests will demonstrate and validate the h-CPS. The PI and mentored postdoctoral researcher will involve students from under-represented groups and K-12 students in safe MUS flight demonstrations. This project offers three research advances: MUS scalability and collision avoidance guarantees through continuum deformation cooperative control, safe MUS compensation for vehicle anomalies, and cognitively-tractable user interfaces. Particularly novel to this work is the h-CPS interface in which an operator pushes on the payload to guide the MUS team. We will apply linear momentum analysis to sense haptic cues and will validate our models in simulation and flight testing. Mission-level decision-making will be performed through system modeling as a Markov game in which game states are defined from human, environment, and aggregate MUS state. Our method abstracts MUS behaviors to reduce cognitive complexity and real-time network and computational overhead.
Off
University of Michigan Ann Arbor
-
National Science Foundation
Submitted by Ella Atkins on October 2nd, 2017
Event
ICDCN 2018
19th International Conference on Distributed Computing and Networking (ICDCN 2018) ICDCN is a premier international conference dedicated to addressing advances in Distributed Computing and Communication Networks, which over the years, has become a leading forum for disseminating the latest research results in these fields. The 19th edition of this international conference will be organized in India, at Indian Institute of Technology (BHU), Varanasi. Varanasi is the oldes city and finds place in most of the mythological scriptures of Hinduism as well.
Submitted by Anonymous on September 22nd, 2017
Subscribe to Robotics