Applications of CPS technologies dealing with automated machines that can take the place of humans in dangerous environments or manufacturing processes, or resemble humans in appearance, behavior, and/or cognition.
This CPS Frontiers project addresses highly dynamic Cyber-Physical Systems (CPSs), understood as systems where a computing delay of a few milliseconds or an incorrectly computed response to a disturbance can lead to catastrophic consequences. Such is the case of cars losing traction when cornering at high speed, unmanned air vehicles performing critical maneuvers such as landing, or disaster and rescue response bipedal robots rushing through the rubble to collect information or save human lives. The preceding examples currently share a common element: the design of their control software is made possible by extensive experience, laborious testing and fine tuning of parameters, and yet, the resulting closed-loop system has no formal guarantees of meeting specifications. The vision of the project is to provide a methodology that allows for complex and dynamic CPSs to meet real-world requirements in an efficient and robust way through the formal synthesis of control software. The research is developing a formal framework for correct-by-construction control software synthesis for highly dynamic CPSs with broad applications to automotive safety systems, prostheses, exoskeletons, aerospace systems, manufacturing, and legged robotics. The design methodology developed here will improve the competitiveness of segments of industry that require a tight integration between hardware and highly advanced control software such as: automotive (dynamic stability and control), aerospace (UAVs), medical (prosthetics, orthotics, and exoskeleton design) and robotics (legged locomotion). To enhance the impact of these efforts, the PIs are developing interdisciplinary teaching materials to be made freely available and disseminating their work to a broad audience. This is a continuing grant of Award # 1562236
Off
Georgia Tech Research Corporation
-
National Science Foundation
Aaron Ames Submitted by Aaron Ames on September 19th, 2017
Event
ANT 2018
The 9th International Conference on Ambient Systems, Networks and Technologies (ANT-2018) Leading international conference for researchers and industry practitioners to share their new ideas, original research results and practical development experiences from all Ambient Systems, Networks and Technologies related areas. ANT 2018 will be held in conjunction with the 7th International Conference on Sustainable Energy Information Technology (SEIT 2018).
Submitted by Anonymous on September 19th, 2017
Event
ARC 2018
14th International Symposium on Applied Reconfigurable Computing (ARC 2018) Reconfigurable computing technologies offer the promise of substantial performance gains over traditional architectures via customizing, even at runtime, the topology of the underlying architecture to match the specific needs of a given application. Contemporary configurable architectures allow for the definition of architectures with functional and storage units that match in function, bit-width and control structures the specific needs of a given computation.
Submitted by Anonymous on September 19th, 2017
Event
IEA/AIE 2018
The 31st International Conference on Industrial, Engineering & Other Applications of Applied Intelligent Systems Scope IEA/AIE 2018 continues the tradition of emphasizing applications of applied intelligent systems to solve real-life problems in all areas including engineering, science, industry, automation & robotics, business & finance, medicine and biomedicine, bioinformatics, cyberspace, and human-machine interactions.
Submitted by Anonymous on August 23rd, 2017
Event
ACIRC 2017
2017 Asia Conference Intelligent Robots and Control (ACIRC 2017) 2017 Asia Conference Intelligent Robots and Control will be held in Jeju Island, South Korea during Sept.25-26, 2017. The aim objective of ACIRC 2017 is to provide a platform for researchers, engineers, academicians as well as industrial professionals from all over the world to present their research results and development activities in Intelligent Robots and Control.
Submitted by Anonymous on July 31st, 2017
Event
ICCPS 2018
9th ACM/IEEE International Conference on Cyber-Physical Systems April 11-13, 2018  | Porto, Portugal | http://iccps.acm.org/2018 part of CPSWeek 2018 Overview. 
Submitted by Anonymous on July 24th, 2017
The 19th IEEE International Conference on Industrial Technology jointly organized by IEEE IES, the University of Lyon, Ampère and Satie labs contact@icit2018.org IEEE ICIT is one of the flagship yearly conferences of the IEEE Industrial Electronics Society, devoted to the dissemination of new research ideas and experiments and works in progress within the fields of:
Submitted by Anonymous on July 24th, 2017
Equipment operation represents one of the most dangerous tasks on a construction sites and accidents related to such operation often result in death and property damage on the construction site and the surrounding area. Such accidents can also cause considerable delays and disruption, and negatively impact the efficiency of operations. This award will conduct research to improve the safety and efficiency of cranes by integrating advances in robotics, computer vision, and construction management. It will create tools for quick and easy planning of crane operations and incorporate them into a safe and efficient system that can monitor a crane's environment and provide control feedback to the crane and the operator. Resulting gains in safety and efficiency will reduce fatal and non-fatal crane accidents. Partnerships with industry will also ensure that these advances have a positive impact on construction practice, and can be extended broadly to smart infrastructure, intelligent manufacturing, surveillance, traffic monitoring, and other application areas. The research will involve undergraduates and includes outreach to K-12 students. The work is driven by the hypothesis that the monitoring and control of cranes can be performed autonomously using robotics and computer vision algorithms, and that detailed and continuous monitoring and control feedback can lead to improved planning and simulation of equipment operations. It will particularly focus on developing methods for (a) planning construction operations while accounting for safety hazards through simulation; (b) estimating and providing analytics on the state of the equipment; (c) monitoring equipment surrounding the crane operating environment, including detection of safety hazards, and proximity analysis to dynamic resources including materials, equipment, and workers; (d) controlling crane stability in real-time; and (e) providing feedback to the user and equipment operators in a "transparent cockpit" using visual and haptic cues. It will address the underlying research challenges by improving the efficiency and reliability of planning through failure effects analysis and creating methods for contact state estimation and equilibrium analysis; improving monitoring through model-driven and real-time 3D reconstruction techniques, context-driven object recognition, and forecasting motion trajectories of objects; enhancing reliability of control through dynamic crane models, measures of instability, and algorithms for finding optimal controls; and, finally, improving efficiency of feedback loops through methods for providing visual and haptic cues.
Off
University of Illinois at Urbana-Champaign
-
National Science Foundation
Mani Golparvar-Fard Submitted by Mani Golparvar-Fard on July 21st, 2017
Event
IUI 2018
ACM IUI 2018 is the 23rd annual meeting of the intelligent interfaces community and serves as a premier international forum for reporting outstanding research and development on intelligent user interfaces. ACM IUI is where the Human-Computer Interaction (HCI) community meets the Artificial Intelligence (AI) community. We are also very interested in contributions from related fields, such as psychology, behavioral science, cognitive science, computer graphics, design, the arts, etc. 
Submitted by Anonymous on July 11th, 2017
Equipment operation represents one of the most dangerous tasks on a construction sites and accidents related to such operation often result in death and property damage on the construction site and the surrounding area. Such accidents can also cause considerable delays and disruption, and negatively impact the efficiency of operations. This award will conduct research to improve the safety and efficiency of cranes by integrating advances in robotics, computer vision, and construction management. It will create tools for quick and easy planning of crane operations and incorporate them into a safe and efficient system that can monitor a crane's environment and provide control feedback to the crane and the operator. Resulting gains in safety and efficiency wil reduce fatal and non-fatal crane accidents. Partnerships with industry will also ensure that these advances have a positive impact on construction practice, and can be extended broadly to smart infrastructure, intelligent manufacturing, surveillance, traffic monitoring, and other application areas. The research will involve undergraduates and includes outreach to K-12 students. The work is driven by the hypothesis that the monitoring and control of cranes can be performed autonomously using robotics and computer vision algorithms, and that detailed and continuous monitoring and control feedback can lead to improved planning and simulation of equipment operations. It will particularly focus on developing methods for (a) planning construction operations while accounting for safety hazards through simulation; (b) estimating and providing analytics on the state of the equipment; (c) monitoring equipment surrounding the crane operating environment, including detection of safety hazards, and proximity analysis to dynamic resources including materials, equipment, and workers; (d) controlling crane stability in real-time; and (e) providing feedback to the user and equipment operators in a "transparent cockpit" using visual and haptic cues. It will address the underlying research challenges by improving the efficiency and reliability of planning through failure effects analysis and creating methods for contact state estimation and equilibrium analysis; improving monitoring through model-driven and real-time 3D reconstruction techniques, context-driven object recognition, and forecasting motion trajectories of objects; enhancing reliability of control through dynamic crane models, measures of instability, and algorithms for finding optimal controls; and, finally, improving efficiency of feedback loops through methods for providing visual and haptic cues.
Off
University of Illinois at Urbana-Champaign
-
National Science Foundation
Mani Golparvar-Fard Submitted by Mani Golparvar-Fard on May 25th, 2017
Subscribe to Robotics