Independent procedures that are used together for checking that a product, service, or system meets requirements and specifications and that it fulfills its intended purpose.
2013 PHM Society Conference Data Challenge
Submitted by Anonymous on August 13th, 2013
International Conference on Convergence and Hybrid Information Technology (ICHIT 2013)   http://www.ichit2013.org    October 25th ~ 26th, 2013, Hannam University, Daejeon, Korea   Since 2006, ICHIT has been focused on various aspects of advances in Convergence and Hybrid Information Technology.
Submitted by Anonymous on August 13th, 2013

 

Submitted by Kevin Smyth on June 6th, 2013
Event
SSCPS 2013
 
Submitted by Anonymous on March 5th, 2013
Effective engineering of complex devices often depends critically on the ability to encapsulate responsibility for tasks into modular agents and ensure those agents communicate with one another in well-defined and easily observable ways. When such conditions are followed, it becomes possible to detect where problems lie so they can be corrected. It also becomes possible to optimize the agents and their communications to improve performance. Cyber-physical systems (like robots, self-piloting aircraft, etc.) modify themselves to improve performance break those conditions in that some agent modules negotiate their own communications and decide their own actions, sometimes taking advantage of the physics of the world in ways we did not anticipate. This renders difficult application of standard engineering tools to accomplish critical fault diagnosis and design optimization. This project will produce analysis methods address the specific needs of cyber-physical systems that, by their natures, break the rules of convention. We will apply these new methods to the design and analysis of self-improving controllers for flapping-wing micro air vehicles. This work will provide advances in both model-checking related formal design methodologies and in module-based self-adaptive control in computationally resource constrained cyber-physical systems. The formal methods advances will significantly expand our ability to properly design and verify systems that tightly couple computation, sensors, and actuators. The specific test application addressed is significant to a number of nationally important security and defense efforts and will directly impact identified national priorities.
Off
Wright State University
-
National Science Foundation
John Gallagher
John Gallagher Submitted by John Gallagher on December 11th, 2012
The project aims at making cities "smarter" by engineering processes such as traffic control, efficient parking services, and new urban activities such as recharging electric vehicles. To that end, the research will study the components needed to establish a Cyber-Physical Infrastructure for urban environments and address fundamental problems that involve data collection, resource allocation, real-time decision making, safety, and security. Accordingly, the research is organized along two main directions: (i) Sensing and data acquisition using a new mobile sensor network paradigm designed for urban environments; and (ii) Decision Support for the "Smart City" relying on formal verification and certification methods coupled with innovative dynamic optimization techniques used for decision making and resource allocation. The work will bring together and build upon methodological advances in optimization under uncertainty, computer simulation, discrete event and hybrid systems, control and games, system security, and formal verification and safety. Target applications include: a "Smart Parking" system where parking spaces are optimally assigned and reserved, and vehicular traffic regulation. The research has the potential of revolutionizing the way cities are viewed: from a passive living and working environment to a highly dynamic one with new ways to deal with transportation, energy, and safety. Teaming up with stakeholders in the Boston Back Bay neighborhood, the City of Boston, and private industry, the research team expects to establish new collaborative models between universities and urban groups for cutting-edge research embedded in the deployment of an exciting technological, economic, and sociological development.
Off
Trustees of Boston University
-
National Science Foundation
Christos Cassandras
Christos Cassandras Submitted by Christos Cassandras on December 11th, 2012
Large-scale critical infrastructure systems, including energy and transportation networks, comprise millions of individual elements (human, software and hardware) whose actions may be inconsequential in isolation but profoundly important in aggregate. The focus of this project is on the coordination of these elements via ubiquitous sensing, communications, computation, and control, with an emphasis on the electric grid. The project integrates ideas from economics and behavioral science into frameworks grounded in control theory and power systems. Our central construct is that of a ?resource cluster,? a collection of distributed resources (ex: solar PV, storage, deferrable loads) that can be coordinated to efficiently and reliably offer services (ex: power delivery) in the face of uncertainty (ex: PV output, consumer behavior). Three topic areas form the core of the project: (a) the theoretical foundations for the ?cluster manager? concept and complementary tools to characterize the capabilities of a resource cluster; (b) centralized resource coordination strategies that span multiple time scales via innovations in stochastic optimal control theory; and (c) decentralized coordination strategies based on cluster manager incentives and built upon foundations of non-cooperative dynamic game theory. These innovations will improve the operation of infrastructure systems via a cyber-physical-social approach to the problem of resource allocation in complex infrastructures. By transforming the role of humans from passive resource recipients to active participants in the electric power system, the project will facilitate energy security for the nation, and climate change mitigation. The project will also engage K-12 students through lab-visits and lectures; address the undergraduate demand for power systems training through curricular innovations at the intersection of cyber-systems engineering and physical power systems; and equip graduate students with the multi-disciplinary training in power systems, communications, control, optimization and economics to become leaders in innovation.
Off
University of California-Berkeley
-
National Science Foundation
Duncan Callaway
Duncan Callaway Submitted by Duncan Callaway on December 11th, 2012
An abstract describing one facet of our research.
Ivan Ruchkin Submitted by Ivan Ruchkin on October 11th, 2012
Chris Myers Submitted by Chris Myers on September 4th, 2012
The world is increasingly experiencing a strong need for energy consumption reduction and for efficient use of scarce natural resources. Official studies report that buildings account for the largest portion of World’s energy expenditure and have the fastest growth rate.
Submitted by Mário Alves on May 9th, 2012
Subscribe to Validation and Verification