Deep Neural Networks (DNN) enabled Cyber-Physical Systems (CPS) hold great promise for revolutionizing many industries, such as drones and self-driving cars. However, the current generation of DNN cannot provide analyzable behaviors and verifiable properties that are necessary for safety assurance. This critical flaw in purely data-driven DNN sometimes leads to catastrophic consequences, such as vehicle crashes linked to self-driving and driver-assistance technologies. On the other hand, physics-model-based engineering methods provide analyzable behaviors and verifiable properties, but do not match the performance of DNN systems. These considerations motivate the work in this project which aims at physics-model-based neural networks (NN) redesign, yielding HyPhy-DNN: a hybrid self-correcting physics-enhanced DNN framework. HyPhy-DNN will provide the performance of DNNs and the analyzability and verifiability of physical models, thus providing a foundation for verifiably safe self-driving cars, drones, and other CPS systems. Moreover, the HyPhy-DNN will fundamentally advance the integration of deep learning and robust control to enable safety- and time-critical CPS to safely operate with high performance in unforeseen and dynamic environments.
This NSF CPS project aims to develop new techniques for modeling cyber-physical systems that will address fundamental challenges associated with scale and complexity in modern engineering. The project will transform human interaction with complex cyber-physical and engineered systems, including critical infrastructure such as interconnected energy networks. This will be achieved through a novel combination of data-driven techniques and physics-based approaches to give mathematical and computational models that are at once abstract enough to be understood by humans making key engineering decisions and precise enough to make quantitative predictions. The intellectual merits of the project include a novel confluence of emerging data science and model-analysis methods, including manifold learning and information geometry. The broader impacts of the project include the training of undergraduates, including those from underrepresented communities, several outreach activities, and publicly available open-source software.
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). This project will develop novel modeling, control, and optimization methods for connected and automated vehicles to operate in human-dominated traffic to improve the efficiency and sustainability of the urban transportation system while respecting individual drivers? unique behaviors and social norms accordingly. The significance of the research is highlighted by the following two needs. First, the inefficiency of the urban transportation system has resulted in substantial fuel waste and emissions over the decades. Leveraging vehicles? growing autonomy and connectivity, a significant boost of energy efficiency, emission performance, and traffic management can be achieved through dedicated control and optimization of vehicle maneuvers and routes. Second, human drivers will remain the majority of operators on the road in the foreseeable future. The resulting mixed traffic where connected and automated vehicles and human drivers share the road with frequent interactions requires detailed modeling of human drivers? behaviors in a socially compatible context. The proposed research can generate socioeconomic incentives such as improving the efficiency of the urban transportation system and promoting technology acceptance for sustainable mobility, thereby alleviating the nation's energetic and environmental concerns. The scientific outcome of the project will advance convergent research areas of control theory, optimization, human behavioral study, and machine learning. The project will involve an interdisciplinary team of students through hands-on research opportunities at Texas Tech University, which has been historically and actively engaged in serving the traditionally underrepresented student body in STEM, contributing towards equitable and inclusive educational and social outcomes.
Robotic manipulation and automation systems have received a lot of attention in the past few years and have demonstrated promising performance in various applications spanning smart manufacturing, remote surgery, and home automation. These advances have been partly due to advanced perception capabilities (using vision and haptics) and new learning models and algorithms for manipulation and control. However, state-of-the-art cyber-physical systems remain limited in their sensing and perception to a direct line of sight and direct contact with the objects they need to perceive. The goal of this project is to design, build, and evaluate a cyber-physical system that can sense, perceive, learn, and manipulate far beyond what is feasible using existing systems. To do so, the research will explore the terahertz band, which offers a new sensing dimension by inferring the inherent material properties of objects via wireless terahertz signals and without direct contact. This project will also explore radio-frequency signals that can traverse occlusions. Building on these emerging sensing modalities, the core of the project focuses on developing full-spectrum perception, control, learning, and manipulation tasks. The success of this project will result in CPS system architectures with unprecedented capabilities, enabling fundamentally new opportunities to make robotic manipulation more efficient and allowing robots to perform new complex tasks that have not been possible before.
Connected Automated Vehicle (CAV) applications are expected to transform the transportation landscape and address some of the pressing safety and efficiency issues. While advances in communication and computing technologies enable the concept of CAVs, the coupling of application, control and communication components of such systems and interference from human actors, pose significant challenges to designing systems that are safe and reliable beyond prototype environments. Realizing CAV applications, in particular in situations where humans may partly remain in the loop, requires addressing uncertainties that arise from human input. Large scale deployment of CAVs will also require addressing challenges in coordination of actions among CAVs and with human operated systems. To address these challenges, this project develops a novel model-based stochastic hybrid systems (SHS)-theoretic approach that relies on describing and communicating behaviors of actors in the system in the form of evolving SHS using Bayesian learning. The models are then utilized in a stochastic model predictive control (SMPC) framework for optimal coordination of actions. The proposed research will provide wide-ranging societal benefits through three major impact areas: first, by advancing research in stochastic communication-aware control design for hybrid systems; second, through the development of new models and advanced controllers to address the emerging challenges of coordinating mixed systems of automated and manned vehicles, hence opening new vistas in other areas involving general multi-agent systems; and third, through educational and outreach activities that are natural extensions of this multidisciplinary research. This project is also the first fruits of a recent National Science Foundation/Deutsche Forschungs Gesellschaft (NSF/DFG) collaboration on cyber-physical systems (CPS). Through this collaboration, NSF funds the US component (University of Central Florida and University of Georgia) while the German partners (University of Technology and University of Koblenz-Landau) are funded by DFG.
Large-scale systems with societal relevance, such as power generation systems, are increasingly able to leverage new technologies to mitigate their environmental impact, e.g., by harvesting energy from renewable sources. This NSF CPS project aims to investigate methods and computational tools to design a new user-centric paradigm for energy apportionment and distribution and, more broadly, for trustworthy utility services. In this paradigm, distributed networked systems will assist the end users of electricity in scheduling and apportioning their consumption. Further, they will enable local and national utility managers to optimize the use of green energy sources while mitigating the effects of intermittence, promote fairness, equity, and affordability. This project pursues a tractable approach to address the challenges of modeling and designing these large-scale, mixed-autonomy, multi-agent CPSs. The intellectual merits include new scalable methods, algorithms, and tools for the design of distributed decision-making strategies and system architectures that can assist the end users in meeting their goals while guaranteeing compliance with the fairness, reliability, and physical constraints of the design. The broader impacts include enabling the automated design of distributed CPSs that coordinate their decision-making in many applications, from robotic swarms to smart manufacturing and smart cities. The research outcomes will also be used in K-12 and undergraduate STEM outreach efforts.