The goal of this work is the realization of autonomous cyber-physical, microsystems for automated correction of blurred vision using flexible electronic contact lenses. The vision correction system integrates thin variable power lenses with object distance microsensors and computation and control software to continuously produce sharply-focused images in individuals suffering from presbyopia. Presbyopia, or loss of the eye's ability to change focus, is an inevitable and universal age-related condition that affects aging adults, causing blurred images and visual impairment.
Complex cyber-physical systems (CPS) that operate in dynamic and uncertain environments will inevitably encounter unanticipated situations during their operation. Examples range from naturally occurring faults in both the cyber and physical components to attacks launched by malicious entities with the purpose of disrupting normal operations. As infrastructures, e.g. energy, transportation, industrial systems and built environments, are getting smarter, the chance of a fault or attack increases.
This Cyber-Physical Systems (CPS) grant will advance structural health monitoring of concrete structures by relying on data acquired by a novel sensing technology with unprecedented scalability and spatial resolution. Modern society depends critically on sound and steadfast functioning of a variety of engineering structures and infrastructures, such as bridges, buildings, pipelines, geotechnical structures, aircrafts, wind turbines, and industrial facilities.
The reach of cyber-physical systems into space is growing exponentially, as launch services proliferate and satellites have become small, cheap, and capable. Unlike expensive satellites of the past, the near future promises constellations of thousands of inexpensive nanosatellites. Nanosatellites are becoming capable of supporting space-based cyber-physical applications, including defense, smart cities, agriculture, & infrastructure, climate science, and search & rescue.
This project develops a cyber-physical-social system for communities to incentivize emerging ride-sourcing (such as Uber and Lyft) and sharing services to improve societal outcomes. The goal is to enable novel public-private partnerships that leverage these services for a win-win-win outcome for all parties involved: reducing travel times, energy use and emissions, while ensuring cost-effectiveness for public agencies; boosting mobility service providers' profitability; and improving the experience of all travelers.
Fishes are masters of locomotion in fluids owing to their highly integrated biological sensing, computing and motor systems. They are adept at collecting and exploiting rich information from the surrounding fluids for underwater sensing and locomotion control. Inspired and informed by fish swimming, this research aims to develop a novel bio-inspired cyber-physical system (CPS) that integrates the "physical" robot fish and fluid environment with the "cyber" robot control & machine learning algorithms.
The objective of this Computer and Information Science and Engineering (CISE) Research Initiation Initiative (CRII) proposal is to develop a cognizant learning framework for cyber-physical systems (CPS) that incorporates risk-sensitive and irrational decision making. The necessity for such a framework is exemplified by two observations. First, CPS such as self-driving cars will share an environment with other CPS and human users.
This cooperative agreement with MetroLab Network aims to build capacity for the Civic Innovation Challenge (CIC), a research and action competition in the Smart & Connected Communities (S&CC) domain, as well as the broader S&CC research ecosystem. Building off of NSF's S&CC program, the CIC aims to flip the community-university dynamic, asking communities to identify civic priorities ripe for innovation and to partner with researchers to address those priorities.
Over the last three decades we have witnessed historic missions to Mars where unmanned space vehicles successfully landed on and explored the Martian surface in search of evidence of past life. Recently reusable rockets have captured the public's imagination by delivering payloads to orbit and then landing safely back on Earth. A common requirement for these space vehicles is that they must be operated autonomously during the atmospheric entry, descent, and landing (EDL). Furthermore, the first time they are ever tested as a fully integrated system is during the actual mission.
This project will develop novel, body-worn, flexible sensors fabricated using low-cost inkjet printing technology on thin film polymers, develop novel algorithms capable of automatically detecting health events in different contexts, and develop a novel data reliability metric by analyzing sensor and context data in real-time. The project will produce practice components for test and validation in a clinical setting with cardiac patients to determine their effectiveness for monitoring heart conditions.