The push towards deploying autonomous-driving capabilities in vehicles is happening at breakneck speed. Semi-autonomous features are becoming increasingly common, and fully autonomous vehicles at mass-market scales are on the horizon. Cameras are cost-effective sensors, so computer-vision techniques have loomed large in implementing autonomous features.
The goal of this project is to explore vehicle platooning at scale in Smart and Connected Communities. The approach is the development of techniques and models that provide incentives for vehicles to join platoons and maintain their platoon memberships. Connected vehicle technology helps in forming vehicle platoons (virtual trains of vehicles traveling with small gaps between them) with benefits including improved energy efficiency, increased road capacity, and enhanced mobility.
Each year the nation spends over $400 billion to power, heat and cool its buildings. Moreover, buildings are a major source of environmental emissions. As a result, even a modest improvement in energy efficiency of the nation's building stock would result in substantial economic and environmental benefits. In this project, the focus is on improving energy efficiency in commercial buildings because this sector represents a substantial portion of the energy usage and costs within the overall building sector.