Smartwatch-like wearables have enabled seamless tracking of vital signs and physical activities, but still lack a significant feature: they are currently unable to provide any information about brain states or to modulate brain function for optimizing human health and performance. This project aims to make it possible for wearables to feature such capabilities. Being aware of brain states is not only extremely valuable in clinical studies but is also crucial to improving human performance in various everyday life activities. While recording neural signals directly from the scalp region is possible, it is impractical for use in everyday life. In order to fill this gap, the goal of this project is to pioneer a closed-loop brain-aware wearable architecture called MINDWATCH. This enables (1) decoding multidimensional brain states from noninvasive wearable devices and (2) applying corrective control. MINDWATCH will transform healthcare delivery (e.g., aging, autism, dementia) as well as human performance and productivity enhancement (e.g., online learning, smart workplaces). For instance, knowledge of mental health and cognitive engagement can enable detecting if a student is depressed or is not cognitively engaged/learning, which makes it possible to take corrective action early on. The research is integrated with educational and outreach activities with an emphasis on increasing the participation of minorities in science and engineering. These activities include hosting hands-on STEM K12 events, supervising undergraduate research interns and capstone senior design projects, creating educational videos, and interdisciplinary course development.
Off
New York University
-
NSF
Submitted by Frankie King on November 10th, 2023