Software tools for designing electronic systems.
Event
ICECCS 2016
21st International Conference on Engineering of Complex Computer Systems (ICECCS 2016) Overview
Submitted by Anonymous on July 6th, 2016
Event
CyPhy 2016
Call for Papers Workshop on Design, Modeling and Evaluation of Cyber Physical Systems (CyPhy 2016) Held in conjunction with ESWEEK 2016 October 6 2016 | Pittsburgh, PA, USA | http://www.cyphy.org/
Submitted by Anonymous on June 10th, 2016
Event
EXE 2016
2nd International Workshop on Executable Modeling (EXE 2016) co-located with MODELS 2016 We are pleased to invite you to submit papers to the Second International Workshop on Executable Modeling (EXE 2016), held in conjunction with the ACM/IEEE 19th International Conference on Model Driven Engineering Languages and Systems (MODELS) at Saint-Malo, France, in October, 2016.
Submitted by Anonymous on May 18th, 2016
Event
RSP 2016
27th IEEE International Symposium on Rapid System Prototyping (RSP 2016) as part of ESWeek
Submitted by Anonymous on May 17th, 2016
The 14th Overture Workshop 7 November 2016 | Cyprus, Greece | http://overturetool.org/workshops/14th-Overture-Workshop.html co-located with The Formal Methods Europe Symposium 2016  INTRODUCTION
Submitted by Anonymous on May 17th, 2016
Event
MSWiM 2016
19th ACM*/IEEE*  19th Annual International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM 2016) *Pending Upon Approval
Submitted by Anonymous on April 27th, 2016
Event
EUC 2016
14th IEEE International Conference on Embedded and Ubiquitous Computing (EUC 2016)  Paris, France | August 24-26, 2016 | http://euc2016.conferences-events.org/ In conjunction with DCABES 2016 and CSE 2016 by MINES ParisTech - Research University, CentraleSupelec and UFC/FEMTO-ST Institute Introduction
Submitted by Anonymous on April 26th, 2016
Event
FTC 2016
Future Technologies Conference 2016 - FTC 2016 6-7 December 2016 | San Francisco, United States | www.SAIConference.com/FTC2016 Sponsored by HPCC Systems FTC attracts researchers, scientists and technologists from some of the top companies, universities, research firms and government agencies from around the world. The conference is predicated on the successful conferences by The Science and Information (SAI) Organization that have been held in the UK since 2013.
Submitted by Anonymous on April 4th, 2016
Infrastructure networks are the foundation of the modern world. Their continued reliable and efficient function without exhausting finite natural resources is critical to the security, continued growth and technological advancement of the United States. Currently these systems are in a state of rapid flux due to a collision of trends such as growing populations, expanding integration of information technology, and increasing motivation to adopt sustainable practices. These trends beget both exciting potential benefits and dangerous challenges. Added sensing, communication, and computational capabilities hold the promise of increased reliability, efficiency and sustainability from "smart" infrastructure systems. At the same time, new technologies such as renewable energy resources in power systems, autonomous vehicles, and software defined communication networks, are testing the limits of current operational and market policies. The rapidly changing suite of system components can cause new, unforeseen interactions that can lead to instability, performance deterioration, or catastrophic failures. Achieving the full benefits of these systems will require a shift from the existing focus on approaches that analyze each aspect of interest in isolation, to a more holistic view that encompasses all of the relevant factors such as stability, robustness, performance and efficiency, and takes into account the presence of human participants. This project provides a research roadmap to construct analysis, design and control tools that ensure the seamless integration of computational algorithms, physical components and human interactions in next generation infrastructure systems. Although there has been a great deal of research on stability questions in large scale distributed systems, there has been little effort directed toward questions of performance, robustness and efficiency in these systems, especially those with heterogeneous components and human participants. This research employs coupled oscillator systems as a common modeling framework to (i) characterize stability and performance of infrastructure systems, and (ii) develop distributed controllers that guarantee performance, efficiency and robustness by isolating disturbances and optimizing performance objectives. Practical solutions require that the theory be tightly integrated with the economic mechanisms necessary to incentivize users to enhance system stability, efficiency and reliability; therefore the work will also include the design of economic controls. In order to ground the mathematical foundations, theory and algorithms described above, the results will be applied to three target infrastructure networks where coupled oscillator models have played a foundational role in design and control: power, communication, and transportation systems. This approach allows the development of cross-cutting, fundamental principles that can be applied across problem specific boundaries and ensures that the research makes an impact on these specific infrastructure networks. This project will also incorporate concepts into existing undergraduate and graduate courses.
Off
University of Notre Dame
-
National Science Foundation
Submitted by Vijay Gupta on March 31st, 2016
Infrastructure networks are the foundation of the modern world. Their continued reliable and efficient function without exhausting finite natural resources is critical to the security, continued growth and technological advancement of the United States. Currently these systems are in a state of rapid flux due to a collision of trends such as growing populations, expanding integration of information technology, and increasing motivation to adopt sustainable practices. These trends beget both exciting potential benefits and dangerous challenges. Added sensing, communication, and computational capabilities hold the promise of increased reliability, efficiency and sustainability from "smart" infrastructure systems. At the same time, new technologies such as renewable energy resources in power systems, autonomous vehicles, and software defined communication networks, are testing the limits of current operational and market policies. The rapidly changing suite of system components can cause new, unforeseen interactions that can lead to instability, performance deterioration, or catastrophic failures. Achieving the full benefits of these systems will require a shift from the existing focus on approaches that analyze each aspect of interest in isolation, to a more holistic view that encompasses all of the relevant factors such as stability, robustness, performance and efficiency, and takes into account the presence of human participants. This project provides a research roadmap to construct analysis, design and control tools that ensure the seamless integration of computational algorithms, physical components and human interactions in next generation infrastructure systems. Although there has been a great deal of research on stability questions in large scale distributed systems, there has been little effort directed toward questions of performance, robustness and efficiency in these systems, especially those with heterogeneous components and human participants. This research employs coupled oscillator systems as a common modeling framework to (i) characterize stability and performance of infrastructure systems, and (ii) develop distributed controllers that guarantee performance, efficiency and robustness by isolating disturbances and optimizing performance objectives. Practical solutions require that the theory be tightly integrated with the economic mechanisms necessary to incentivize users to enhance system stability, efficiency and reliability; therefore the work will also include the design of economic controls. In order to ground the mathematical foundations, theory and algorithms described above, the results will be applied to three target infrastructure networks where coupled oscillator models have played a foundational role in design and control: power, communication, and transportation systems. This approach allows the development of cross-cutting, fundamental principles that can be applied across problem specific boundaries and ensures that the research makes an impact on these specific infrastructure networks. This project will also incorporate concepts into existing undergraduate and graduate courses.
Off
Johns Hopkins University
-
National Science Foundation
Dennice Gayme Submitted by Dennice Gayme on March 31st, 2016
Subscribe to Design Automation Tools