Theoretical aspects of cyber-physical systems.
Opportunities and Obligations for Physical Computing Systems, Computer, Volume 38, Issue 11, November 2005, pages 23-31. (Report produced by a Workshop at the IEEE Real-Time Systems Symposium, December 2003).
Submitted by Anonymous on April 16th, 2012
NSF Workshop on Cyber-Physical Systems October 16-17, 2006 | Austin, Texas http://www.mdpnp.org/FDA_Workshop.html PROGRAM | SPONSORS | ORGANIZERS
Submitted by Anonymous on April 16th, 2012
NSF Industry Round-Table on Cyber-Physical Systems, May 17, 2007, Arlington, VA.
Submitted by Anonymous on April 16th, 2012
Event
CPS Summit
Cyber-Physical Systems Summit "Holistic Approaches to Cyber-Physical Integration" April 24-25, 2008 | St. Louis, Missouri http://varma.ece.cmu.edu/Summit/ PROGRAM | BREAKOUTS | ORGANIZERS
Submitted by Anonymous on April 16th, 2012
CPS Community Forum San Francisco, California, USA Note: Before attending the CPS Forum, attendees are strongly encouraged to read the CPS Executive Summary. Monday, April 13, 2009 1800 - 2030: CPS Forum Posters and Demos Wenesday, April 15, 2009 - Program Agenda
Ragunathan  Rajkumar Submitted by Ragunathan Rajkumar on April 16th, 2012
Event
ACC2010
ACC2010  -- American Control Conference
Christopher Buskirk Submitted by Christopher Buskirk on April 16th, 2012
Event
CompCPS-2010
CompCPS-2010  -- The First Australasian Workshop on Computation in Cyber-Physical Systems Sydney, Australia http://www.prokopenko.net/CompCPS-2010.html
Submitted by Anonymous on April 16th, 2012
Event
MobiCPS 2010
MobiCPS 2010 - The 1st IEEE International Workshop on Mobile Cyber-Physical Systems The MobiCPS workshop is an international forum for researchers and practitioners to present innovative ideas and results on all aspects of mobile cyber-physical systems, including theoretical foundations, techniques and methods, tools and platforms, prototypes, and practical applications. Besides research papers, this workshop will feature Invited Talks and a Panel Discussion session.  
Submitted by Anonymous on April 16th, 2012

Synopsis:
The goal of the High-Assurance Cyber Military Systems (HACMS) program is to create technology for the construction of high-assurance, cyber-physical systems, where high assurance is defined to mean functionally correct and satisfying appropriate safety and security properties. Achieving this goal requires a fundamentally different approach from what the software community has taken to date. HACMS will adopt a clean-slate, formal methods–based approach that enables semi-automated code synthesis from executable, formal specifications.

Important Dates:
Posting Date: February 23, 2012
Response Date: July 10, 2012

Solicitation Number: DARPA-BAA-12-21
Notice Type: Combined Synopsis/Solicitation
Agency: Other Defense Agencies
Office: Defense Advanced Research Projects Agency
Location: Contracts Management Office

See the full DARPA-BAA-12-21solicitation.

General Announcement
Not in Slideshow
Katie Dey Submitted by Katie Dey on February 28th, 2012

Cyber-physical systems (CPS) are engineered systems that are built from and depend upon the synergy of computational and physical components.  Emerging CPS will be coordinated, distributed, and connected, and must be robust and responsive.  The CPS of tomorrow will need to far exceed the systems of today in capability, adaptability, resiliency, safety, security, and usability.  Examples of the many CPS application areas include the smart electric grid, smart transportation, smart buildings, smart medical technologies, next-generation air traffic management, and advanced manufacturing.  CPS will transform the way people interact with engineered systems, just as the Internet transformed the way people interact with information.  However, these goals cannot be achieved without rigorous systems engineering.

The December 2010 report of the President's Council of Advisors on Science and Technology, Designing a Digital Future: Federally Funded Research and Development in Networking and Information Technology calls for continued investment in CPS research because of its scientific and technological importance as well as its potential impact on grand challenges in a number of sectors critical to U.S. security and competitiveness, including aerospace, automotive, chemical production, civil infrastructure, energy, healthcare, manufacturing, materials and transportation.

We do not yet have a mature science to support systems engineering of high confidence CPS, and the consequences are profound.  Traditional analysis tools are unable to cope with the full complexity of CPS or adequately predict system behavior. The present electric power grid, an ad hoc system, experiences blackouts over large regions, tripped by minor events that escalate with surprising speed into widespread power failures.  This illustrates the limitations of the current science and technology, which do not enable us to conceptualize and design for the deep interdependencies among engineered systems and the natural world.  At the same time, pressure to develop technologies such as renewable energy, wireless health, advanced manufacturing, smart materials, and electrified ground and air vehicles creates an unprecedented opportunity to rethink many important classes of systems.

The goal of the CPS program is to develop the core system science needed to engineer complex cyber-physical systems upon which people can depend with high confidence. The program aims to foster a research community committed to advancing research and education in CPS and to transitioning CPS science and technology into engineering practice. By abstracting from the particulars of specific systems and application domains, the CPS program aims to reveal cross-cutting fundamental scientific and engineering principles that underpin the integration of cyber and physical elements across all application sectors.  To expedite and accelerate the realization of cyber-physical systems in a wide range of applications, the CPS program also supports the development of methods, tools, and hardware and software components based upon these cross-cutting principles, along with validation of the principles via prototypes and test beds.

Three types of research and education projects will be considered, which differ in scope and goals:

  • Breakthrough projects must offer a significant advance in fundamental CPS science, engineering and/or technology that has the potential to change the field.  Funding for Breakthrough projects may be requested for a total of  up to $750,000 for a period of up to 3 years.
  • Synergy projects must demonstrate innovation at the intersection of multiple disciplines, to accomplish a clear goal that requires an integrated perspective spanning the disciplines.  Funding for Synergy projects may be requested for a total of $750,001 to $2,000,000 for a period of 3 to 4 years.
  • Frontiers projects must address clearly identified critical CPS challenges that cannot be achieved by a set of smaller projects.  Funding may be requested for a total of $1,200,000 to $10,000,000 for a period of 4 to 5 years.  Note that, due to the difference in goals and scope, the range for Frontiers projects overlaps with the range for Synergy projects.

The CPS program is cooperating with other government agencies to support cyber-physical systems research that is relevant to their missions. Dear Colleague Letters will announce these opportunities as they arise.

A more complete description of the CPS program is provided in Section II, Program Description, of this solicitation.

CONTACTS
Image removed.

Name Email Phone Room
Helen  Gill hgill@nsf.gov (703) 292-7834  1175  
Theodore  P. Baker tbaker@nsf.gov (703) 292-8608  1175  
Ralph  Wachter rwachter@nsf.gov (703) 292-8950  1175  
Radhakisan  Baheti rbaheti@nsf.gov (703) 292-8339  525  
Bruce  Kramer bkramer@nsf.gov (703) 292-5348  545S  

PROGRAM GUIDELINES
Image removed.
Solicitation  12-520

DUE DATES

Full Proposal Window:  February 15, 2012 - March 15, 2012

Full Proposal Window:  December 17, 2012 - January 22, 2013

Proposals will be accepted only within these windows.

THIS PROGRAM IS PART OF
Image removed.
Additional Funding Opportunities for the CCF Community
Image removed.
Additional Funding Opportunities for the CNS Community
Image removed.
Additional Funding Opportunities for the IIS CommunityImage removed.


What Has Been Funded (Recent Awards Made Through This Program, with Abstracts)

Map of Recent Awards Made Through This Program

News

General Announcement
Not in Slideshow
Submitted by Anonymous on February 27th, 2012
Subscribe to Foundations