Theoretical aspects of cyber-physical systems.
Growing demands on our civil infrastructure have heightened the need for smart structural components and systems whose behavior and performance can be controlled under a variety of loading scenarios such as high winds and earthquakes. However, due to the sheer size, scale and cost of most civil engineering structures, design and testing of such smart structures needs to be conducted using a hybrid cyber-physical approach where the infrastructure system in question, for example a bridge, is studied by coupling a small number of physical components with a numerical model of the rest of the structure. Undoubtedly, the success of such a hybrid approach, especially for dynamic real-time applications, hinges on effective integration of the cyber and physical components of the system. This project provides the essential building blocks and a computational integration platform to enable real-time hybrid testing of civil engineering structures. Design and development of physical components, multi-level numerical models, and real-time control algorithms will be conducted at Purdue University. Washington University will provide an adaptive, configurable concurrency platform and communication mechanisms that meet the strict scheduling constraints of real-time cyber-physical systems. The two institutions will collaboratively design a prototype system and conduct extensive testing to validate the integration of the various components and evaluate system performance. Specifications, software, benchmarks, and data developed during the course of this project will be made freely available to the cyber-physical research community. In addition to directly advancing the state-of-the-art in real-time hybrid testing, this research will also impact the areas of avionics, automotive design, smart grids for distributed power transmission and similar applications in other domains.
Off
Purdue University
-
National Science Foundation
Arun Prakash
Arun  Prakash Submitted by Arun Prakash on December 15th, 2011
Growing demands on our civil infrastructure have heightened the need for smart structural components and systems whose behavior and performance can be controlled under a variety of loading scenarios such as high winds and earthquakes. However, due to the sheer size, scale and cost of most civil engineering structures, design and testing of such smart structures needs to be conducted using a hybrid cyber-physical approach where the infrastructure system in question, for example a bridge, is studied by coupling a small number of physical components with a numerical model of the rest of the structure. Undoubtedly, the success of such a hybrid approach, especially for dynamic real-time applications, hinges on effective integration of the cyber and physical components of the system. This project provides the essential building blocks and a computational integration platform to enable real-time hybrid testing of civil engineering structures. Design and development of physical components, multi-level numerical models, and real-time control algorithms will be conducted at Purdue University. Washington University will provide an adaptive, configurable concurrency platform and communication mechanisms that meet the strict scheduling constraints of real-time cyber-physical systems. The two institutions will collaboratively design a prototype system and conduct extensive testing to validate the integration of the various components and evaluate system performance. Specifications, software, benchmarks, and data developed during the course of this project will be made freely available to the cyber-physical research community. In addition to directly advancing the state-of-the-art in real-time hybrid testing, this research will also impact the areas of avionics, automotive design, smart grids for distributed power transmission and similar applications in other domains.
Off
Washington University
-
National Science Foundation
Christopher Gill
Christopher Gill Submitted by Christopher Gill on December 15th, 2011
This NSF grant supports the First PI Meeting and Workshop on Cyber-Physical Systems (CPS), held at the Westin Arlington Gateway hotel, in Arlington, VA on Aug 10-12, 2010. The purpose of this meeting is to provide a forum for scientific interaction among a wide range of stakeholders in academia, industry and federal agencies; to review new developments in CPS foundations; to identify new, emerging applications; and to discuss technology gaps and barriers. The program of the meeting includes presentations from projects funded by NSF under the Cyber-Physical Systems program, government and industry panels, and topical discussion groups.
Off
Vanderbilt University
-
National Science Foundation
Gabor Karsai
Gabor Karsai Submitted by Gabor Karsai on December 6th, 2011
This workshop on Mathematical Foundations of Open Systems explores new research directions towards a logical/mathematical foundation for modeling the behavior of dynamic open systems that evolve over time through self-organization, regulation, and adaptation to changing environments and structures. Such a framework should provide a unified approach for obtaining an advanced understanding of natural systems, the ability to fix and modify them, and to design cyber-physical systems (CPS) in principled ways using new notions of control and coordination. The workshop, held May 23-25, 2010, Philadelphia, PA, is supported by the NSF and other agency members of the interagency coordinating group on High Confidence Software and Systems.
Off
University of Pennsylvania
-
National Science Foundation
Harvey Rubin
Harvey Rubin Submitted by Harvey Rubin on December 6th, 2011
This award supports the first Summer School on Cyber-Physical Systems, held at the Georgia Institute of Technology, Atlanta, Georgia, June 22-25, 2009. NSF funds support outreach and enable the participation of US graduate students and early career faculty in this international event. Cyber Physical Systems (CPS) are systems that rely on a tight integration of computation, communication, and controls, for their operation and interaction with the physical environment in which they are deployed. Such systems must be able to operate safely, dependably, securely, efficiently and in real-time, in potentially highly uncertain or unstructured environments. CPS are expected to have great technical, economic and societal impacts in the near future. The objective of the Georgia Tech Summer School on Cyber-Physical Systems is to establish a forum for intellectual exchange on CPS science and technology for researchers from industry and academia. The format of the Summer School is a five-day meeting, organized around the different aspects of Cyber Physical Systems. The topical areas covered include: formal methods, distributed embedded systems, networked control systems, embedded software, scheduling, platforms, and applications.
Off
Georgia Tech Research Corporation
-
National Science Foundation
Wolf, Marilyn
Marilyn Wolf Submitted by Marilyn Wolf on December 6th, 2011
This project will construct a wireless network of animal-borne embedded devices that will be deployed and tested in a biologically-relevant application. The networked devices will provide not only geo-location data, but also execute cooperative strategies that save battery-life by selectively recording bandwidth-intensive audio and high-definition video footage of occurrences of animal group behavior of interest, such as predation. This project comprises three concurrent and interdependent research themes. The first is the investigation of methods to design and analyze the performance of distributed algorithms that implement autonomous decisions at the mobile agents, subject to communication and computational constraints. The second will pursue data-driven fundamental research on the modeling of animal group motion and will promote a formal understanding of the mechanisms of social interaction. The third is centered on the investigation of methods for hardware integration to build distributed networks of embedded devices that are capable of executing the newly developed algorithms, subject to power and weight constraints. The results and experience gained in this project will guide the development of effective autonomous systems for the monitoring and protection of endangered species. This project will create undergraduate and graduate research opportunities at all participating institutions, expanding on an existing collaboration between the University of Maryland, Princeton University, and the National Geographic Society. There is the potential for using wide-reaching media resources to disseminate the results of this project to a broad audience. This may contribute to attracting more students to engineering and science.
Off
Princeton University
-
National Science Foundation
Leonard, Naomi
Naomi Leonard Submitted by Naomi Leonard on December 6th, 2011
The focus of this project is the efficient implementation of multiple control and non-control automotive applications in a distributed embedded system (DES) with a goal of developing safe, dependable, and secure Automotive CPS. DES are highly attractive due to the fact that they radically enhance the capabilities of the underlying system by linking a range of devices and sensors and allowing information to be processed in unprecedented ways. Deploying control and non-control applications on a modern DES, which uses advanced processor and communication technology, introduces a host of challenges in their analysis and synthesis, and leads to a large semantic gap between models and their implementation. This gap will be filled via the development of a novel CPS architecture by stitching together common fundamental principles of multimodality from real-time systems and related notions of switching in control theory and integrating them into a co-design of real-time platforms and adaptive controllers. This architecture will be validated at the Toyota Technical Center in the context of engine control and diagnostics. The results of this project will provide the science and technology for a foundation in any and all infrastructure systems ranging from finance and energy to telecommunication and transportation where distributed embedded systems are present. In addition to training the graduate and undergraduate students, and mentoring a post-doctoral associate who will gain multi-domain expertise in advanced control, real-time computation and communication, and performance analysis, an inter-school graduate and an integrated summer course will be developed on control in embedded systems and combined with on-going outreach programs at MIT and UPenn for minority and women undergraduate students and K-12 students.
Off
University of Pennsylvania
-
National Science Foundation
Lee, Insup
Insup Lee Submitted by Insup Lee on December 6th, 2011
Many practical barriers continue to exist for a blind individual who strives to lead an independent and active life, despite decades of development of assistive technologies. This project addresses the following two most prominent challenges: (1) disparity in information-sharing among people with visual impairment and its limited understanding by the research community; and (2) lack of methods and tools for effectively addressing the disparity. The central idea is to engage visually-impaired people and their families and friends to directly contribute to a joint endeavor of enhancing information flow, increasing awareness, and improving efficiency of assistive practices, through employing social media and participatory Web. The research is focused on designing computational methodologies and developing tools that are necessary for building cyber-physical systems for a domain where the tight intertwining of physical and cyber systems plus active participation of the human users are the key to attaining the otherwise unlikely capabilities for improving the quality of living for people with special needs. The key approach is to develop a blind-specific cyber-physical system that supports social-media-based crowdsourcing. This enables visually-impaired people to form loosely-connected groups, actively contribute their information and knowledge, and ask/answer unique questions of special needs. Such a system has specific features required: i) blind-friendly (both the cyber components and the physical components); ii) able to provide constantly-updated information, as opposed to just static websites); iii) able to support the users? real-time query for information when mobile iv) able to provide information that is important to the users? daily living, and v) supports expandability and scalability of the CPS, e.g., being able to bridge to other existing social network sites or to expand the virtual community. Specific approaches include automatic direction inquiry, instant call-in/text-in system, community-specific data mining, information retrieval and behavior modeling, all aiming at providing the most useful information for the target user. Aiming at bridging a significant knowledge gap in addressing the challenge of disparity in information-sharing for people with special needs in the age of social media, the project contributes to the development of a deeper understanding of the principles and methodologies in building new cyber-physical systems that promote and support active participation of users of the system, which is especially important for special-need groups such as the visually impaired, the elderly, etc. The significant impact of the work on the society lies in its potential in empowering special-need groups to pursue active and independent living in the information era. The work?s immediate impact on education is two-fold: supporting the visually-impaired students in independent learning and study as well as training students to work on emerging domains of tightly-intertwined cyber and physical systems.
Off
Arizona State University
-
National Science Foundation
Li, Baoxin
Baoxin LI Submitted by Baoxin LI on December 6th, 2011
This project will construct a wireless network of animal-borne embedded devices that will be deployed and tested in a biologically-relevant application. The networked devices will provide not only geo-location data, but also execute cooperative strategies that save battery-life by selectively recording bandwidth-intensive audio and high-definition video footage of occurrences of animal group behavior of interest, such as predation. This project comprises three concurrent and interdependent research themes. The first is the investigation of methods to design and analyze the performance of distributed algorithms that implement autonomous decisions at the mobile agents, subject to communication and computational constraints. The second will pursue data-driven fundamental research on the modeling of animal group motion and will promote a formal understanding of the mechanisms of social interaction. The third is centered on the investigation of methods for hardware integration to build distributed networks of embedded devices that are capable of executing the newly developed algorithms, subject to power and weight constraints. The results and experience gained in this project will guide the development of effective autonomous systems for the monitoring and protection of endangered species. This project will create undergraduate and graduate research opportunities at all participating institutions, expanding on an existing collaboration between the University of Maryland, Princeton University, and the National Geographic Society. There is the potential for using wide-reaching media resources to disseminate the results of this project to a broad audience. This may contribute to attracting more students to engineering and science.
Off
National Geographic Society
-
National Science Foundation
Marshall, Greg
Submitted by Kyler Abernathy on December 6th, 2011
This project will construct a wireless network of animal-borne embedded devices that will be deployed and tested in a biologically-relevant application. The networked devices will provide not only geo-location data, but also execute cooperative strategies that save battery-life by selectively recording bandwidth-intensive audio and high-definition video footage of occurrences of animal group behavior of interest, such as predation. This project comprises three concurrent and interdependent research themes. The first is the investigation of methods to design and analyze the performance of distributed algorithms that implement autonomous decisions at the mobile agents, subject to communication and computational constraints. The second will pursue data-driven fundamental research on the modeling of animal group motion and will promote a formal understanding of the mechanisms of social interaction. The third is centered on the investigation of methods for hardware integration to build distributed networks of embedded devices that are capable of executing the newly developed algorithms, subject to power and weight constraints. The results and experience gained in this project will guide the development of effective autonomous systems for the monitoring and protection of endangered species. This project will create undergraduate and graduate research opportunities at all participating institutions, expanding on an existing collaboration between the University of Maryland, Princeton University, and the National Geographic Society. There is the potential for using wide-reaching media resources to disseminate the results of this project to a broad audience. This may contribute to attracting more students to engineering and science.
Off
University of Maryland College Park
-
National Science Foundation
Martins, Nuno Miguel
Nuno Martins Submitted by Nuno Martins on December 6th, 2011
Subscribe to Foundations