Supervisory Control and Data Acquisition (SCADA) Systems
IEEE DEST 2012 (June 18-20 2012, Campione, ITALY) has a track on Cyber Physical Energy Systems:
Submitted by Peter Palensky on April 16th, 2012
The major purpose of this symposium is to extend and endorse particular concepts that will generate novel research and codify resilience in next generation control system designs.
Craig Rieger Submitted by Craig Rieger on April 16th, 2012
The goal of this two-day, single-track event is to expose researchers to control and modeling challenges in cyber-physical systems (CPS) with the aim of exchanging knowledge and fostering collaborations between academia, industry, and government agencies. The proposed symposium will cover several applications of cyber-physical systems such as networked systems of unmanned vehicles, power grids, green buildings, transportation systems and health-care systems via invited talks, poster presentations and a panel discussion.
Submitted by Quanyan Zhu on April 16th, 2012
The National Meeting on Beyond SCADA: Networked Embedded Control for Cyber Physical Systems was held on Pittsburgh, Pennsylvania on November 8 & 9, 2006. The workshop produced a report which can be found at http://cps-vo.org/NEC4CPS-report.
Submitted by Anonymous on April 16th, 2012
  
Submitted by Jim BRAZELL on January 25th, 2012
Abstract The objective of this research is to develop advanced distributed monitoring and control systems for civil infrastructure. The approach uses a cyber-physical co-design of wireless sensor-actuator networks and structural monitoring and control algorithms. The unified cyber-physical system architecture and abstractions employ reusable middleware services to develop hierarchical structural monitoring and control systems. The intellectual merit of this multi-disciplinary research includes (1) a unified middleware architecture and abstractions for hierarchical sensing and control; (2) a reusable middleware service library for hierarchical structural monitoring and control; (3) customizable time synchronization and synchronized sensing routines; (4) a holistic energy management scheme that maps structural monitoring and control onto a distributed wireless sensor-actuator architecture; (5) dynamic sensor and actuator activation strategies to optimize for the requirements of monitoring, computing, and control; and (6) deployment and empirical validation of structural health monitoring and control systems on representative lab structures and in-service multi-span bridges. While the system constitutes a case study, it will enable the development of general principles that would be applicable to a broad range of engineering cyber-physical systems. This research will result in a reduction in the lifecycle costs and risks related to our civil infrastructure. The multi-disciplinary team will disseminate results throughout the international research community through open-source software and sensor board hardware. Education and outreach activities will be held in conjunction with the Asia-Pacific Summer School in Smart Structures Technology jointly hosted by the US, Japan, China, and Korea.
Off
Purdue University
-
National Science Foundation
Dyke, Shirley
Shirley Dyke Submitted by Shirley Dyke on April 7th, 2011
The objective of this research is to develop a new approach for composition of safety-critical cyber-physical systems from a small code base of verified components and a large code base of unverified commercial off-the-shelf components. The approach is novel in that it does not require generating the entire code base from formal languages, specifications, or models and does not require verification to be applied to all code. Instead, an explicit goal is to accommodate large amounts of legacy code that is typically too complex to verify. The project introduces a set of verified component wrappers around existing unverified code, such that specified global system properties hold. The intellectual merit of the project lies in its innovative approach for managing component interactions. Unexpected interactions are the primary source of failure in cyber-physical systems. A fundamental conceptual challenge is to understand the different interaction spaces of cyber-physical system components and determine a set of trigger conditions when certain interactions must be restricted to prevent failure. The project develops analysis techniques that help understand the different interaction types and provides component wrappers to restrict them when necessary. Broader impact lies in significantly reducing the design and composition effort for the next generation of safety-critical embedded systems. A variety of student projects are being offered to undergraduates and graduate students. The researchers especially encourage women and minorities to participate. Outreach activity, such as hosting K-12 students on school field/science days, further strengthen the educational component. Technology transfer to John Deere is expected.
Off
University of Illinois at Urbana-Champaign
-
National Science Foundation
Tarek Abdelzaher
Tarek Abdelzaher Submitted by Tarek Abdelzaher on April 7th, 2011
This Report is based on the results of the National Workshop on Beyond SCADA held in Pittsburgh, PA, November 8-9, 2006.
Submitted by Anonymous on May 24th, 2010
Subscribe to SCADA Systems