The terms denote engineering domains that have high CPS content.
Event
MobiSPC '17
The 14th International Conference on Mobile Systems and Pervasive Computing (MobiSPC)
Mobile Systems and Pervasive Computing (MobiSPC) have evolved into an active area of research and development. This is due to the tremendous advances in a broad spectrum of technologies and topics, including wireless networking, mobile and distributed computing, sensor systems, RFID technology, and the ubiquitous mobile phone. MobiSPC-2017 solicits papers that focus on the theory, systems, practices and challenges of providing users with a successful mobile or wireless experience.
Submitted by Anonymous on November 17th, 2016
Situational Awareness provides a user centric approach to security and privacy. The human factor is often recognised as the weakest link in security, therefore situational perception and risk awareness play a leading role in the adoption and implementation of security mechanisms. In this study we assess the understanding of security and privacy of users in possession of wearable devices. The findings demonstrate privacy complacency, as the majority of users trust the application and the wearable device manufacturer.
Submitted by xavier bellekens on November 17th, 2016
Event
SIES 2017
12th IEEE International Symposium on Industrial Embedded Systems (SIES 2017)
June 7-9, 2017 | Toulouse, France | Web site: http://sies2017.onera.fr
Submitted by Anonymous on November 9th, 2016
Event
SARL-17
International Workshop on Agent-based Modeling and Applications with SARL (SARL-17)
Madeira, Portugal | May 16-19, 2017 | http://www.multiagent.fr/Conferences:SARL17
In conjunction with the 8th International Conference on Ambient Systems, Networks, and Technologies (ANT 2017).
Submitted by Anonymous on October 25th, 2016
Event
ANT 2017
The 8th International Conference on Ambient Systems, Networks and Technologies (ANT-2017)
in conjunction with the 7th International Conference on Sustainable Energy Information Technology (SEIT 2017)
The 8th International Conference on Ambient Systems, Networks and Technologies (ANT-2017) is a leading international conference for researchers and industry practitioners to share their new ideas, original research results and practical development experiences from all Ambient Systems, Networks and Technologies related areas.
Submitted by Anonymous on October 17th, 2016
Event
IUBT 2017
The 7th International Symposium on Internet of Ubiquitous and Pervasive Things (IUPT 2017)
To be held in conjunction with Ambient Systems, Networks and Technologies Conference (ANT'17)
Submitted by Anonymous on October 17th, 2016
Event
Computing 2017
Computing Conference 2017
Computing Conference (formerly called Science and Information (SAI) Conference) is a research conference held in London, UK since 2013. The conference series has featured keynote talks, special sessions, poster presentation, tutorials, workshops, and contributed papers each year.
Submitted by Anonymous on October 12th, 2016
Cyber-physical systems (CPS) encompass the next generation of computerized control for countless aspects of the physical world and interactions thereof. The typical engineering process for CPS reuses existing designs, models, components, and software from one version to the next. For example, in automotive engineering, it is common to reuse significant portions of existing model-year vehicle designs when developing the next model-year vehicle, and such practices are common across CPS industries, from aerospace to biomedical. While reuse drastically enhances efficiency and productivity, it leads to the possibility of introducing unintended mismatches between subcomponents' specifications. For example, a 2011 US National Highway Traffic Safety Administration (NHTSA) recall of over 1.5 million model-year 2005-2010 vehicles was due to the upgrade of a physical transmission component that was not appropriately addressed in software. A mismatch between cyber and physical specifications may occur when a software or hardware upgrade (in effect, a cyber or physical specification change) is not addressed by an update (in effect, a matching specification change) in the other domain. This research will develop new techniques and software tools to detect automatically if cyber-physical specification mismatches exist, and then mitigate the effects of such mismatches at runtime, with the overall goal to yield more reliable and safer CPS upon which society increasingly depends. The detection and mitigation methods developed will be evaluated in an energy CPS testbed. While the evaluation testbed is in the energy domain, the methods are applicable to other CPS domains such as automotive, aerospace, and biomedical. The educational goals will bridge gaps between computer science and electrical engineering, preparing a diverse set of next-generation CPS engineers by developing education platforms to enhance CPS engineering design and verification skills.
The proposed research is to develop new techniques and tools to automatically identify and mitigate the effects of cyber-physical specification mismatches. There are three major research objectives. The first objective is to identify cyber-physical specification mismatches. To identify mismatches, a detection problem will be formalized using the framework of hybrid input/output automata (HIOA). Offline algorithms will be designed to find candidate specifications from models and implementations using static and dynamic analyses, and then identify candidate mismatches. The second objective is to monitor and assure safe CPS upgrades. As modern CPS designs are complex, it may be infeasible to determine all specifications and mismatches between all subcomponents at design time. Runtime monitoring and verification methods will be developed for inferred specifications to detect mismatches at runtime. When they are identified, a runtime assurance framework building on supervisory control and the Simplex architecture will assure safe CPS runtime operation. The third objective is to evaluate safe CPS upgrades in an example CPS. The results of the other objectives and their ability to ensure safe CPS upgrades will be evaluated in an energy CPS testbed, namely an AC electrical distribution microgrid that interfaces DC-producing renewables like photovoltaics to AC.
Off
University of Texas at Arlington
Taylor Johnson
-
National Science Foundation
Submitted by Taylor Johnson on October 3rd, 2016
This project designs algorithms for the integration of plug-in hybrid electric vehicles (PEVs) into the power grid. Specifically, the project will formulate and solve optimization problems critical to various entities in the PEV ecosystem -- PEV owners, commercial charging station owners, aggregators, and distribution companies -- at the distribution / retail level. Charging at both commercial charging stations and at residences will be considered, for both the case when PEVs only function as loads, and the case when they can also function as sources, equipped with vehicle-to-home (V2H) or vehicle-to-grid (V2G) energy reinjection capability. The focus of the project is on distributed decision making by various individual players to achieve analytical system-level performance guarantees.
Electrification of the transportation market offers revenue growth for utility companies and automobile manufacturers, lower operational costs for consumers, and benefits to the environment. By addressing problems that will arise as PEVs impose extra load on the grid, and by solving challenges that currently impede the use of PEVs as distributed storage resources, this research will directly impact the society. The design principles gained will also be applicable to other cyber-physical infrastructural systems. A close collaboration with industrial partners will ground the research in real problems and ensure quick dissemination of results to the marketplace. A strong educational component will integrate the proposed research into the classroom to allow better training of both undergraduate and graduate students.
Off
California Institute of Technology
Vijay Gupta
-
National Science Foundation
Submitted by Vijay Gupta on September 28th, 2016
Motivated by the fact that the 2014 Ebola outbreak is the largest in history and there is a pressing need to understand how to improve delivery of care with the right technological interventions at the right place, this Rapid Response Research is aimed at realizing a human-in-the-loop medical cyber-physical system (CPS) for monitoring patients, insuring compliance with relevant safety protocols, and collecting data for advancing multidisciplinary research on infectious disease control. The ultimate goal is to enhance safety of Ebola workers by minimizing their contact with potentially contaminated surfaces and materials through integration of methods and technologies to realize smart and connected treatment clinics. This project could impact the response to infectious disease outbreaks by augmenting existing treatment clinics with cost-effective, modular, reconfigurable and
open-design CPS technologies. The project will train a new cadre of engineering students, researchers and innovators to be
sensitive to societal needs and national priorities by involving K-Gray, undergraduate and graduate students in all aspects of the project, especially at the co-ideation and co-design stages. The project will bring together a multidisciplinary team of engineers, scientists, technologists, medical experts, and humanitarian aid workers to develop holistic solutions to infectious disease control. The broader impacts also include operational cost savings in treatment clinics by reducing the need and use of the personal protective equipment and preserve resources such as water by reducing consumption.
In order to prevent, detect and respond to current Ebola outbreak and future similar infectious disease outbreaks, this research plan has the following interconnected aims: (1) contribute new knowledge, methods, and tools to better understand the operational procedures in an infectious disease treatment clinic, (2) design, implement and validate a treatment ward augmented with a medical CPS for patient monitoring, (3) apply intuitive control interfaces and data visualization tools for practical human-robot interaction, (4) realize traded, coordinated and collaborative shared control techniques for safe and effective mobile robot navigation inside a treatment facility, (5) assess acceptability and effectiveness of the technology among health care workers and patients. The team will develop a self-contained, modular and reconfigurable system composed of a connected sensor network for patient monitoring and a mobile robot platform for telemedicine that will primarily focus on the interoperability and integration of existing standardized
hardware and software systems to realize a testbed for verification and validation of a medical CPS. Medical, emergency response and humanitarian aid experts will be engaged to critically assess user-experiences and acceptability among medical staff to develop pathways for fielding the system in a treatment clinic. This RAPID project will lead the way in designing the next generation of human-in-the-loop medical CPS for empowering health care workers worldwide in treating patients during infectious disease outbreaks.
Off
Worcester Polytechnic Institute
Taskin Padir
-
National Science Foundation
Sonia Chernova
Michael Gennert
Jeanine Skorinko
Submitted by Taskin Padir on September 28th, 2016
Feedback
Feedback
If you experience a bug or would like to see an addition or change on the current page, feel free to leave us a message.