Several computations executing simultaneously, and potentially interacting with each other.
Event
CRTS 2013
6th International Workshop on Compositional Theory and Technology for Real-Time Embedded Systems (CRTS 2013) 
Submitted by Anonymous on September 24th, 2013
Event
HiRES 2014
2nd Workshop on High-performance and Real-time Embedded Systems (HiRES 2014) January 20, 2014, Vienna, Austria To be held in conjunction with the 9th International Conference on High-Performance and Embedded Architectures and Compilers (HiPEAC 2014) http://www.hipeac.net/hipeac2014
Submitted by Anonymous on September 24th, 2013
Event
CONCUR 2013
CONCUR 2013 24th International Conference on Concurrency Theory August 27 - 30, 2013, Buenos Aires Argentina   The purpose of the CONCUR conferences is to bring together researchers, developers, and students in order to advance the theory of concurrency, and promote its applications.   INVITED SPEAKERS
Amy Karns Submitted by Amy Karns on August 14th, 2013
 
Submitted by Anonymous on May 7th, 2013
Event
TIME 2013
20th International Symposium on Temporal Representation and Reasoning Symposium Scope
Submitted by Anonymous on May 7th, 2013
CALL FOR PARTICIPATION: FormaliSE 2013 FME Workshop on Formal Methods in Software Engineering held in conjunction with ICSE 2013 Saturday 25 May 2013, San Francisco, USA http://www.formalise.org/ WORKSHOP SCOPE The software industry has a long-standing and well-earned reputation for failing to deliver on its promises and it is clear that still nowadays, the success of software projects with the current technologies cannot be assured.
Submitted by Anonymous on April 19th, 2013
Effective response and adaptation to the physical world, and rigorous management of such behaviors through programmable computational means, are mandatory features of cyber physical systems (CPS). However, achieving such capabilities across diverse application requirements surpasses the current state of the art in system platforms and tools. Current computational platforms and tools often treat physical properties individually and in isolation from other cyber and physical attributes. They do not adequately support the expression, integration, and enforcement of system properties that span cyber and physical domains. This results in inefficient use of both cyber and physical resources, and in lower system effectiveness overall. This work investigates novel approaches to these important problems, based on modularizing and integrating diverse cyber-physical concerns that cross-cut physical, hardware, instruction set, kernel, library, and application abstractions. The three major thrusts of this research are 1) establishing foundational models for expressing, analyzing, enforcing, and measuring different conjoined cyber-physical properties, 2) conducting a fundamental re-examination of system development tools and platforms to identify how different application concerns that cut across them can be modularized as cyber-physical system aspects, and 3) developing prototype demonstrations of our results to evaluate further those advances in the state of the art in aspect-oriented techniques for CPS, to help assess the feasibility of broader application of the approach. The broader impact of this work will be through dissemination of academic papers, and open platforms and tools that afford unprecedented integration of cyber-physical properties.
Off
-
Iowa State University
Jones, Phillip
Phillip Jones Submitted by Phillip Jones on November 17th, 2011
The objective of this research is to develop new models of computation for multi-robot systems. Algorithm execution proceeds in a cycle of communication, computation, and motion. Computation is inextricably linked to the physical configuration of the system. Current models cannot describe multi-robot systems at a level of abstraction that is both manageable and accurate. This project will combine ideas from distributed algorithms, computational geometry, and control theory to design new models for multi-robot systems that incorporate physical properties of the systems. The approach is to focus on the high-level problem of exploring an unknown environment while performing designated tasks, and the sub-problem of maintaining network connectivity. Key issues to be studied will include algorithmic techniques for handling ongoing discrete failures, and ways of understanding system capabilities as related to failure rates, geometric assumptions and physical parameters such as robot mobility and communication bandwidth. New metrics will be developed for error rates and robot mobility. Intellectual merit arises from the combination of techniques from distributed algorithms, computational geometry, and control theory to develop and analyze algorithms for multi-robot systems. The project will develop a new class of algorithms and techniques for their rigorous analysis, not only under ideal conditions, but under a variety of error assumptions. The project will test theoretical ideas empirically, on three different multi-robot systems. Broader impacts will include new algorithms for robot coordination, and rigorous understanding of the capabilities of different hardware platforms. Robots are an excellent outreach tool, and provide concrete examples of theory in action.
Off
William Marsh Rice University
-
National Science Foundation
McLurkin, James
James McLurkin Submitted by James McLurkin on November 3rd, 2011
The objective of this research is to develop new models of computation for multi-robot systems. Algorithm execution proceeds in a cycle of communication, computation, and motion. Computation is inextricably linked to the physical configuration of the system. Current models cannot describe multi-robot systems at a level of abstraction that is both manageable and accurate. This project will combine ideas from distributed algorithms, computational geometry, and control theory to design new models for multi-robot systems that incorporate physical properties of the systems. The approach is to focus on the high-level problem of exploring an unknown environment while performing designated tasks, and the sub-problem of maintaining network connectivity. Key issues to be studied will include algorithmic techniques for handling ongoing discrete failures, and ways of understanding system capabilities as related to failure rates, geometric assumptions and physical parameters such as robot mobility and communication bandwidth. New metrics will be developed for error rates and robot mobility. Intellectual merit arises from the combination of techniques from distributed algorithms, computational geometry, and control theory to develop and analyze algorithms for multi-robot systems. The project will develop a new class of algorithms and techniques for their rigorous analysis, not only under ideal conditions, but under a variety of error assumptions. The project will test theoretical ideas empirically, on three different multi-robot systems. Broader impacts will include new algorithms for robot coordination, and rigorous understanding of the capabilities of different hardware platforms. Robots are an excellent outreach tool, and provide concrete examples of theory in action.
Off
Massachusetts Institute of Technology
-
National Science Foundation
Lynch, Nancy
Nancy Lynch Submitted by Nancy Lynch on November 3rd, 2011
Effective response and adaptation to the physical world, and rigorous management of such behaviors through programmable computational means, are mandatory features of cyber physical systems (CPS). However, achieving such capabilities across diverse application requirements surpasses the current state of the art in system platforms and tools. Current computational platforms and tools often treat physical properties individually and in isolation from other cyber and physical attributes. They do not adequately support the expression, integration, and enforcement of system properties that span cyber and physical domains. This results in inefficient use of both cyber and physical resources, and in lower system effectiveness overall. This work investigates novel approaches to these important problems, based on modularizing and integrating diverse cyber-physical concerns that cross-cut physical, hardware, instruction set, kernel, library, and application abstractions. The three major thrusts of this research are 1) establishing foundational models for expressing, analyzing, enforcing, and measuring different conjoined cyber-physical properties, 2) conducting a fundamental re-examination of system development tools and platforms to identify how different application concerns that cut across them can be modularized as cyber-physical system aspects, and 3) developing prototype demonstrations of our results to evaluate further those advances in the state of the art in aspect-oriented techniques for CPS, to help assess the feasibility of broader application of the approach. The broader impact of this work will be through dissemination of academic papers, and open platforms and tools that afford unprecedented integration of cyber-physical properties.
Off
Washington University
-
National Science Foundation
Cytron, Ron
Ron Cytron Submitted by Ron Cytron on October 31st, 2011
Subscribe to Concurrency and Timing