This project addresses the impact of the integration of renewable intermittent generation in a power grid. This includes the consideration of sophisticated sensing, communication, and actuation capabilities on the system's reliability, price volatility, and economic and environmental efficiency. Without careful crafting of its architecture, the future smart grid may suffer from a decrease in reliability. Volatility of prices may increase, and the source of high prices may be more difficult to identify because of undetectable strategic policies. This project addresses these challenges by relying on the following components: (a) the development of tractable cross-layer models; physical, cyber, and economic, that capture the fundamental tradeoffs between reliability, price volatility, and economic and environmental efficiency, (b) the development of computational tools for quantifying the value of information on decision making at various levels, (c) the development of tools for performing distributed robust control design at the distribution level in the presence of information constraints, (d) the development of dynamic economic models that can address the real-time impact of consumer's feedback on future electricity markets, and finally (e) the development of cross-layer design principles and metrics that address critical architectural issues of the future grid.
This project promotes modernization of the grid by reducing the system-level barriers for integration of new technologies, including the integration of new renewable energy resources. Understanding fundamental limits of performance is indispensable to policymakers that are currently engaged in revamping the infrastructure of our energy system. It is critical that we ensure that the transition to a smarter electricity infrastructure does not jeopardize the reliability of our electricity supply twenty years down the road. The educational efforts and outreach activities will provide multidisciplinary training for students in engineering, economics, and mathematics, and will raise awareness about the exciting research challenges required to create a sustainable energy future.
Off
University of Florida
-
National Science Foundation
Submitted by Sean Meyn on December 18th, 2015
This project designs algorithms for the integration of plug-in hybrid electric vehicles (PEVs) into the power grid. Specifically, the project will formulate and solve optimization problems critical to various entities in the PEV ecosystem -- PEV owners, commercial charging station owners, aggregators, and distribution companies -- at the distribution / retail level. Charging at both commercial charging stations and at residences will be considered, for both the case when PEVs only function as loads, and the case when they can also function as sources, equipped with vehicle-to-home (V2H) or vehicle-to-grid (V2G) energy reinjection capability. The focus of the project is on distributed decision making by various individual players to achieve analytical system-level performance guarantees.
Electrification of the transportation market offers revenue growth for utility companies and automobile manufacturers, lower operational costs for consumers, and benefits to the environment. By addressing problems that will arise as PEVs impose extra load on the grid, and by solving challenges that currently impede the use of PEVs as distributed storage resources, this research will directly impact the society. The design principles gained will also be applicable to other cyber-physical infrastructural systems. A close collaboration with industrial partners will ground the research in real problems and ensure quick dissemination of results to the marketplace. A strong educational component will integrate the proposed research into the classroom to allow better training of both undergraduate and graduate students. The details of the project will be provided at http://ee.nd.edu/faculty/vgupta/research/funding/cps_pev.html
Off
University of Washington
-
National Science Foundation
Submitted by Daniel Kirschen on December 18th, 2015
Large-scale critical infrastructure systems, including energy and transportation networks, comprise millions of individual elements (human, software and hardware) whose actions may be inconsequential in isolation but profoundly important in aggregate. The focus of this project is on the coordination of these elements via ubiquitous sensing, communications, computation, and control, with an emphasis on the electric grid. The project integrates ideas from economics and behavioral science into frameworks grounded in control theory and power systems. Our central construct is that of a ?resource cluster,? a collection of distributed resources (ex: solar PV, storage, deferrable loads) that can be coordinated to efficiently and reliably offer services (ex: power delivery) in the face of uncertainty (ex: PV output, consumer behavior). Three topic areas form the core of the project: (a) the theoretical foundations for the ?cluster manager? concept and complementary tools to characterize the capabilities of a resource cluster; (b) centralized resource coordination strategies that span multiple time scales via innovations in stochastic optimal control theory; and (c) decentralized coordination strategies based on cluster manager incentives and built upon foundations of non-cooperative dynamic game theory.
These innovations will improve the operation of infrastructure systems via a cyber-physical-social approach to the problem of resource allocation in complex infrastructures. By transforming the role of humans from passive resource recipients to active participants in the electric power system, the project will facilitate energy security for the nation, and climate change mitigation. The project will also engage K-12 students through lab-visits and lectures; address the undergraduate demand for power systems training through curricular innovations at the intersection of cyber-systems engineering and physical power systems; and equip graduate students with the multi-disciplinary training in power systems, communications, control, optimization and economics to become leaders in innovation.
Off
University of Florida
-
National Science Foundation
This project designs algorithms for the integration of plug-in hybrid electric vehicles (PEVs) into the power grid. Specifically, the project will formulate and solve optimization problems critical to various entities in the PEV ecosystem -- PEV owners, commercial charging station owners, aggregators, and distribution companies -- at the distribution / retail level. Charging at both commercial charging stations and at residences will be considered, for both the case when PEVs only function as loads, and the case when they can also function as sources, equipped with vehicle-to-home (V2H) or vehicle-to-grid (V2G) energy reinjection capability. The focus of the project is on distributed decision making by various individual players to achieve analytical system-level performance guarantees.
Electrification of the transportation market offers revenue growth for utility companies and automobile manufacturers, lower operational costs for consumers, and benefits to the environment. By addressing problems that will arise as PEVs impose extra load on the grid, and by solving challenges that currently impede the use of PEVs as distributed storage resources, this research will directly impact the society. The design principles gained will also be applicable to other cyber-physical infrastructural systems. A close collaboration with industrial partners will ground the research in real problems and ensure quick dissemination of results to the marketplace. A strong educational component will integrate the proposed research into the classroom to allow better training of both undergraduate and graduate students. The details of the project will be provided at http://ee.nd.edu/faculty/vgupta/research/funding/cps_pev.html
Off
University of Notre Dame
-
National Science Foundation
Large-scale critical infrastructure systems, including energy and transportation networks, comprise millions of individual elements (human, software and hardware) whose actions may be inconsequential in isolation but profoundly important in aggregate. The focus of this project is on the coordination of these elements via ubiquitous sensing, communications, computation, and control, with an emphasis on the electric grid. The project integrates ideas from economics and behavioral science into frameworks grounded in control theory and power systems. Our central construct is that of a ?resource cluster,? a collection of distributed resources (ex: solar PV, storage, deferrable loads) that can be coordinated to efficiently and reliably offer services (ex: power delivery) in the face of uncertainty (ex: PV output, consumer behavior). Three topic areas form the core of the project: (a) the theoretical foundations for the ?cluster manager? concept and complementary tools to characterize the capabilities of a resource cluster; (b) centralized resource coordination strategies that span multiple time scales via innovations in stochastic optimal control theory; and (c) decentralized coordination strategies based on cluster manager incentives and built upon foundations of non-cooperative dynamic game theory.
These innovations will improve the operation of infrastructure systems via a cyber-physical-social approach to the problem of resource allocation in complex infrastructures. By transforming the role of humans from passive resource recipients to active participants in the electric power system, the project will facilitate energy security for the nation, and climate change mitigation. The project will also engage K-12 students through lab-visits and lectures; address the undergraduate demand for power systems training through curricular innovations at the intersection of cyber-systems engineering and physical power systems; and equip graduate students with the multi-disciplinary training in power systems, communications, control, optimization and economics to become leaders in innovation.
Off
Cornell University
-
National Science Foundation
Submitted by Eilyan Bitar on December 18th, 2015
The Boolean Microgrid (BM) emulates the Internet by supplying discrete power and discrete data over a network link that follows Boolean logic and is not continuous as in a conventional 60-Hz-ac or dc microgrid. BM is thus a highly integrated cyber-physical system (CPS) that features the convergence of control, communication and the physical plant. BM?s realization poses the following research challenges that we plan to address: a) what is the most efficient, economic, power-dense, and reliable way of integrating the distributed energy sources and loads to the BM, and the BM to the utility grid, using power-electronic interfaces for seamless and on-demand distributed power delivery? b) what is the control-communication mechanism that optimizes BM nodal and network control performances under conditions of varying power generation and load demand and communication-network throughput and reliability? Our unique approaches to address these research challenges will encompass novel mechanisms based on high-frequency-link power conversion, dynamic-pricing based optimal network capacity and resource utilization, event-triggered sampling and communication, and optimal switching-sequence control.
BM has the potential to influence next-generation systems including smart grid, vehicular microgrid, electric ships, military microgrid, electric aircraft, telecommunication systems, and residential, commercial, and critical-infrastructure (e.g., hospital) power systems. On the educational front, the proposed project will provide graduate- and post-graduate-level education to four researchers. Further, multiple undergraduate (including minority) students and middle-school students will be provided research/educational opportunities. The results of the research will be integrated into undergraduate and graduate courses at the collaborating universities including a dedicated course on CPS.
Off
University of Illinois at Chicago
-
National Science Foundation
Submitted by Sudip Mazumder on December 18th, 2015
The Boolean Microgrid (BM) emulates the Internet by supplying discrete power and discrete data over a network link that follows Boolean logic and is not continuous as in a conventional 60-Hz-ac or dc microgrid. BM is thus a highly integrated cyber-physical system (CPS) that features the convergence of control, communication and the physical plant. BMs realization poses the following research challenges that we plan to address: a) what is the most efficient, economic, power-dense, and reliable way of integrating the distributed energy sources and loads to the BM, and the BM to the utility grid, using power-electronic interfaces for seamless and on-demand distributed power delivery? b) what is the control-communication mechanism that optimizes BM nodal and network control performances under conditions of varying power generation and load demand and communication-network throughput and reliability? Our unique approaches to address these research challenges will encompass novel mechanisms based on high-frequency-link power conversion, dynamic-pricing based optimal network capacity and resource utilization, event-triggered sampling and communication, and optimal switching-sequence control.
BM has the potential to influence next-generation systems including smart grid, vehicular microgrid, electric ships, military microgrid, electric aircraft, telecommunication systems, and residential, commercial, and critical-infrastructure (e.g., hospital) power systems. On the educational front, the proposed project will provide graduate- and post-graduate-level education to four researchers. Further, multiple undergraduate (including minority) students and middle-school students will be provided research/educational opportunities. The results of the research will be integrated into undergraduate and graduate courses at the collaborating universities including a dedicated course on CPS.
Off
Texas A&M Engineering Experiment Station
-
National Science Foundation
Submitted by Panganamala Kumar on December 18th, 2015
Project
CPS: Frontiers: Collaborative Research: Foundations of Resilient CybEr-Physical Systems (FORCES)
This CPS Frontiers project addresses highly dynamic Cyber-Physical Systems (CPSs), understood as systems where a computing delay of a few milliseconds or an incorrectly computed response to a disturbance can lead to catastrophic consequences. Such is the case of cars losing traction when cornering at high speed, unmanned air vehicles performing critical maneuvers such as landing, or disaster and rescue response bipedal robots rushing through the rubble to collect information or save human lives. The preceding examples currently share a common element: the design of their control software is made possible by extensive experience, laborious testing and fine tuning of parameters, and yet, the resulting closed-loop system has no formal guarantees of meeting specifications.
The vision of the project is to provide a methodology that allows for complex and dynamic CPSs to meet real-world requirements in an efficient and robust way through the formal synthesis of control software. The research is developing a formal framework for correct-by-construction control software synthesis for highly dynamic CPSs with broad applications to automotive safety systems, prostheses, exoskeletons, aerospace systems, manufacturing, and legged robotics.
The design methodology developed here will improve the competitiveness of segments of industry that require a tight integration between hardware and highly advanced control software such as: automotive (dynamic stability and control), aerospace (UAVs), medical (prosthetics, orthotics, and exoskeleton design) and robotics (legged locomotion). To enhance the impact of these efforts, the PIs are developing interdisciplinary teaching materials to be made freely available and disseminating their work to a broad audience.
Off
Massachusetts Institute of Technology
-
National Science Foundation
Asuman Ozdaglar
Submitted by Saurabh Amin on December 18th, 2015
Project
CPS: Frontiers: Collaborative Research: Foundations of Resilient CybEr-Physical Systems (FORCES)
This NSF Cyber-Physical Systems (CPS) Frontiers project "Foundations Of Resilient CybEr-physical Systems (FORCES)" focuses on the resilient design of large-scale networked CPS systems that directly interface with humans. FORCES aims to pr ovide comprehensive tools that allow the CPS designers and operators to combine resilient control (RC) algorithms with economic incentive (EI) schemes.
Scientific Contributions
The project is developing RC tools to withstand a wide-range of attacks and faults; learning and control algorithms which integrate human actions with spatio-temporal and hybrid dynamics of networked CPS systems; and model-based design to assure semantically consistent representations across all branches of the project. Operations of networked CPS systems naturally depend on the systemic social institutions and the individual deployment choices of the humans who use and operate them. The presence of incomplete and asymmetric information among these actors leads to a gap between the individually and socially optimal equilibrium resiliency levels. The project is developing EI schemes to reduce this gap. The core contributions of the FORCES team, which includes experts in control systems, game theory, and mechanism design, are the foundations for the co-design of RC and EI schemes and technological tools for implementing them.
Expected Impacts
Resilient CPS infrastructure is a critical National Asset. FORCES is contributing to the development of new Science of CPS by being the first project that integrates networked control with game theoretic tools and the economic incentives of human decision makers for resilient CPS design and operation. The FORCES integrated co-design philosophy is being validated on two CPS domains: electric power distribution and consumption, and transportation networks. These design prototypes are being tested in real world scenarios. The team's research efforts are being complemented by educational offerings on resilient CPS targeted to a large and diverse audience.
Off
University of Michigan Ann Arbor
-
National Science Foundation
Project
CPS: Frontiers: Collaborative Research: Foundations of Resilient CybEr-Physical Systems (FORCES)
This NSF Cyber-Physical Systems (CPS) Frontiers project "Foundations Of Resilient CybEr-physical Systems (FORCES)" focuses on the resilient design of large-scale networked CPS systems that directly interface with humans. FORCES aims to pr ovide comprehensive tools that allow the CPS designers and operators to combine resilient control (RC) algorithms with economic incentive (EI) schemes.
Scientific Contributions
The project is developing RC tools to withstand a wide-range of attacks and faults; learning and control algorithms which integrate human actions with spatio-temporal and hybrid dynamics of networked CPS systems; and model-based design to assure semantically consistent representations across all branches of the project. Operations of networked CPS systems naturally depend on the systemic social institutions and the individual deployment choices of the humans who use and operate them. The presence of incomplete and asymmetric information among these actors leads to a gap between the individually and socially optimal equilibrium resiliency levels. The project is developing EI schemes to reduce this gap. The core contributions of the FORCES team, which includes experts in control systems, game theory, and mechanism design, are the foundations for the co-design of RC and EI schemes and technological tools for implementing them.
Expected Impacts
Resilient CPS infrastructure is a critical National Asset. FORCES is contributing to the development of new Science of CPS by being the first project that integrates networked control with game theoretic tools and the economic incentives of human decision makers for resilient CPS design and operation. The FORCES integrated co-design philosophy is being validated on two CPS domains: electric power distribution and consumption, and transportation networks. These design prototypes are being tested in real world scenarios. The team's research efforts are being complemented by educational offerings on resilient CPS targeted to a large and diverse audience.
Off
Vanderbilt University
-
National Science Foundaiton
Submitted by Xenofon Koutsoukos on December 18th, 2015