This project focuses on the problem of information acquisition, state estimation and control in the context of cyber physical systems. In our underlying model, a (set of) decision maker(s), by controlling a sequence of actions with uncertain outcomes, dynamically refines the belief about stochastically time-varying parameters of interest. These parameters are then used to control the physical system efficiently and robustly. Here the cyber system collects, processes, and acquires information about the underlying physical system of interest, which is used for its control. The proposed work will develop a new theoretical framework for stochastic learning, decision-making, and control in stochastically-varying cyber physical systems. In order to obtain analytical insights into the structure of efficient design, we first consider the case where the actions of the cyber system only affect the estimate of the underlying physical system. This class of problems arises in the context of (distributed) sensing/tracking of a physical system in isolation from cyber system control of the physical system's state. Joint state estimation and control for cyber-physical systems will then be considered. Here the most natural first step is to obtain sufficient conditions and/or special classes of systems where a separated approach to the information acquisition and efficient control is (near) optimal. To demonstrate its utility in practice, our theoretical framework will be applied in the specific context of energy efficient control of data centers and robust control of the smart grid under limited sensing. The intellectual merit of this work will be to develop a theoretical framework for the design of cyber-physical systems including information acquisition, state estimation, and control. In addition, separation theorems for the optimality of separate state estimation and control will be explored. In terms of broader impacts, significant performance improvement of control systems closed over communication networks will impact a wide range of applications for societal benefit, including smart buildings, intelligent transportation systems, energy-efficient data centers, and the future smart-grid. The PIs plan to disseminate the research results widely through conferences and journals, as well as by organizing specialized workshops and conference sessions related to cyber physical systems. The proposed project will train Ph.D. students as well as enrich the curriculum taught by the PIs in communications, stochastic control, and networks. The PIs have a strong track record in diversity and outreach activities, which for this project will include exposure and involvement of high school and undergraduate students, including under-represented minorities and women.
Off
Stanford University
-
National Science Foundation
Submitted by Andrea Goldsmith on December 21st, 2015
This project focuses on the problem of information acquisition, state estimation and control in the context of cyber physical systems. In our underlying model, a (set of) decision maker(s), by controlling a sequence of actions with uncertain outcomes, dynamically refines the belief about stochastically time-varying parameters of interest. These parameters are then used to control the physical system efficiently and robustly. Here the cyber system collects, processes, and acquires information about the underlying physical system of interest, which is used for its control. The proposed work will develop a new theoretical framework for stochastic learning, decision-making, and control in stochastically-varying cyber physical systems. In order to obtain analytical insights into the structure of efficient design, we first consider the case where the actions of the cyber system only affect the estimate of the underlying physical system. This class of problems arises in the context of (distributed) sensing/tracking of a physical system in isolation from cyber system control of the physical system's state. Joint state estimation and control for cyber-physical systems will then be considered. Here the most natural first step is to obtain sufficient conditions and/or special classes of systems where a separated approach to the information acquisition and efficient control is (near) optimal. To demonstrate its utility in practice, our theoretical framework will be applied in the specific context of energy efficient control of data centers and robust control of the smart grid under limited sensing. The intellectual merit of this work will be to develop a theoretical framework for the design of cyber-physical systems including information acquisition, state estimation, and control. In addition, separation theorems for the optimality of separate state estimation and control will be explored. In terms of broader impacts, significant performance improvement of control systems closed over communication networks will impact a wide range of applications for societal benefit, including smart buildings, intelligent transportation systems, energy-efficient data centers, and the future smart-grid. The PIs plan to disseminate the research results widely through conferences and journals, as well as by organizing specialized workshops and conference sessions related to cyber physical systems. The proposed project will train Ph.D. students as well as enrich the curriculum taught by the PIs in communications, stochastic control, and networks. The PIs have a strong track record in diversity and outreach activities, which for this project will include exposure and involvement of high school and undergraduate students, including under-represented minorities and women.
Off
Carnegie Mellon University
-
National Science Foundation
Bruno Sinopoli Submitted by Bruno Sinopoli on December 21st, 2015
This project focuses on the problem of information acquisition, state estimation and control in the context of cyber physical systems. In our underlying model, a (set of) decision maker(s), by controlling a sequence of actions with uncertain outcomes, dynamically refines the belief about stochastically time-varying parameters of interest. These parameters are then used to control the physical system efficiently and robustly. Here the cyber system collects, processes, and acquires information about the underlying physical system of interest, which is used for its control. The proposed work will develop a new theoretical framework for stochastic learning, decision-making, and control in stochastically-varying cyber physical systems. In order to obtain analytical insights into the structure of efficient design, we first consider the case where the actions of the cyber system only affect the estimate of the underlying physical system. This class of problems arises in the context of (distributed) sensing/tracking of a physical system in isolation from cyber system control of the physical system's state. Joint state estimation and control for cyber-physical systems will then be considered. Here the most natural first step is to obtain sufficient conditions and/or special classes of systems where a separated approach to the information acquisition and efficient control is (near) optimal. To demonstrate its utility in practice, our theoretical framework will be applied in the specific context of energy efficient control of data centers and robust control of the smart grid under limited sensing. The intellectual merit of this work will be to develop a theoretical framework for the design of cyber-physical systems including information acquisition, state estimation, and control. In addition, separation theorems for the optimality of separate state estimation and control will be explored. In terms of broader impacts, significant performance improvement of control systems closed over communication networks will impact a wide range of applications for societal benefit, including smart buildings, intelligent transportation systems, energy-efficient data centers, and the future smart-grid. The PIs plan to disseminate the research results widely through conferences and journals, as well as by organizing specialized workshops and conference sessions related to cyber physical systems. The proposed project will train Ph.D. students as well as enrich the curriculum taught by the PIs in communications, stochastic control, and networks. The PIs have a strong track record in diversity and outreach activities, which for this project will include exposure and involvement of high school and undergraduate students, including under-represented minorities and women.
Off
University of California at San Diego
-
National Science Foundation
Submitted by Tara Javidi on December 21st, 2015
This project develops algorithms for revising a given model for a cyber-physical system while ensuring that the revised model is correct-by-construction and is realizable in the constraints imposed by the cyber-physical system. It specializes these algorithms in the context of fault-tolerance (with the theory of separation of concerns) and in the context of timed models (with the role of fairness). The project identifies constraints imposed by the inability to revise some or all physical components and ensure that they are satisfied during revision. It specializes model revision algorithms in two contexts: fault-tolerance and role of fairness during revision. Regarding fault-tolerance, it develops the theory of separation of concerns for cyber-physical systems. This work bridges the gap between fault-tolerance components, control theory and model revision. Regarding fairness, it develops efficient algorithms for revision by using abstraction to model continuous behaviors with discrete behaviors that utilize fairness. One broad impact of this project is to advance the fundamental science and technology of cyber-physical systems by developing systematic methods that ensure system correctness during maintenance where the system is revised due to changing requirements and/or environment. The algorithms from this project will provide techniques for providing assurance in automotive and aeronautical systems. In the context where fault-tolerance properties are added, the proposed activities also have the potential to identify missing specifications early and thereby reduce the cost of designing corresponding systems. The proposed activities facilitate in educating graduate students about different tasks involved in providing assurance via component based models and via model revision.
Off
Michigan State University
-
National Science Foundation
Submitted by Sandeep Kulkarni on December 21st, 2015
This project designs algorithms for the integration of plug-in hybrid electric vehicles (PEVs) into the power grid. Specifically, the project will formulate and solve optimization problems critical to various entities in the PEV ecosystem -- PEV owners, commercial charging station owners, aggregators, and distribution companies -- at the distribution / retail level. Charging at both commercial charging stations and at residences will be considered, for both the case when PEVs only function as loads, and the case when they can also function as sources, equipped with vehicle-to-home (V2H) or vehicle-to-grid (V2G) energy reinjection capability. The focus of the project is on distributed decision making by various individual players to achieve analytical system-level performance guarantees. Electrification of the transportation market offers revenue growth for utility companies and automobile manufacturers, lower operational costs for consumers, and benefits to the environment. By addressing problems that will arise as PEVs impose extra load on the grid, and by solving challenges that currently impede the use of PEVs as distributed storage resources, this research will directly impact the society. The design principles gained will also be applicable to other cyber-physical infrastructural systems. A close collaboration with industrial partners will ground the research in real problems and ensure quick dissemination of results to the marketplace. A strong educational component will integrate the proposed research into the classroom to allow better training of both undergraduate and graduate students. The details of the project will be provided at http://ee.nd.edu/faculty/vgupta/research/funding/cps_pev.html
Off
University of Pennsylvania
-
National Science Foundation
Submitted by Ufuk Topcu on December 18th, 2015
This proposal is to collect perishable data on the physical response of the transportation infrastructure in New York City following Hurricane Sandy. It makes use of a new human-in-the-loop smartphone-based crowd-sourcing sensing technology, called TrafficTurk. TrafficTurk is a smartphone application which enables intelligent, human?centric sensing of traffic flows during extreme events. The aftermath of Hurricane Sandy represents a rare opportunity to observe transient behavior of a transportation network in response to a significant loss of physical infrastructure (due to flooding and gas shortages) and cyber infrastructure (due to loss of power for traffic control devices). The data gathered by this project, which will be shared with researchers across the country, will enable study of how traffic dynamics evolve after a major disruption to the cyber and physical components of a transportation infrastructure system. Potential benefits include improved preparedness and response to future disasters.
Off
University of Illinois at Urbana-Champaign
-
National Science Foundation
Daniel Work Submitted by Daniel Work on December 18th, 2015
This project designs algorithms for the integration of plug-in hybrid electric vehicles (PEVs) into the power grid. Specifically, the project will formulate and solve optimization problems critical to various entities in the PEV ecosystem -- PEV owners, commercial charging station owners, aggregators, and distribution companies -- at the distribution / retail level. Charging at both commercial charging stations and at residences will be considered, for both the case when PEVs only function as loads, and the case when they can also function as sources, equipped with vehicle-to-home (V2H) or vehicle-to-grid (V2G) energy reinjection capability. The focus of the project is on distributed decision making by various individual players to achieve analytical system-level performance guarantees. Electrification of the transportation market offers revenue growth for utility companies and automobile manufacturers, lower operational costs for consumers, and benefits to the environment. By addressing problems that will arise as PEVs impose extra load on the grid, and by solving challenges that currently impede the use of PEVs as distributed storage resources, this research will directly impact the society. The design principles gained will also be applicable to other cyber-physical infrastructural systems. A close collaboration with industrial partners will ground the research in real problems and ensure quick dissemination of results to the marketplace. A strong educational component will integrate the proposed research into the classroom to allow better training of both undergraduate and graduate students. The details of the project will be provided at http://ee.nd.edu/faculty/vgupta/research/funding/cps_pev.html
Off
University of Washington
-
National Science Foundation
Daniel Kirschen Submitted by Daniel Kirschen on December 18th, 2015
This project demonstrates the synergistic use of a cyber-physical infrastructure consisting of smart-phone devices; cloud computing, wireless communication, and intelligent transportation systems to manage vehicles in the complex urban network -- through the use of traffic controls, route advisories and road pricing -- to jointly optimize drivers' mobility and the sustainability goals of reducing energy usage and improving air quality. The system developed, MIDAS-CPS, proactively manages the interacting traffic demand and the available transportation supply. A key element of MIDAS-CPS is the data collection and display device PICT that collects each participating driver's vehicle position, forward images from the vehicle's dashboard, and communication time stamps, and then displays visualizations of predicted queues ahead, relevant road prices, and route advisories. Given the increasing congestion in most of the urban areas, and the rising costs of constructing traffic control facilities and implementing highway hardware, MIDAS-CPS could revolutionize the way traffic is managed on the urban network since all computing is done via clouds and the drivers instantly get in-vehicle advisories with graphical visualizations of predicted conditions. It is anticipated this would lead to improved road safety and lesser drive stress, besides the designed benefits on the environment, energy consumption, congestion mitigation, and driver mobility. This multidisciplinary project is at the cutting edge in several areas: real-time image processing, real-time traffic prediction and supply/demand management, and cloud computing. Its educational impacts include enhancements of curricula and laboratory experiences at participating universities, workforce development, and student diversity.
Off
Arizona State University
-
National Science Foundation
Submitted by Pitu Michandani on December 18th, 2015
This project demonstrates the synergistic use of a cyber-physical infrastructure consisting of smart-phone devices; cloud computing, wireless communication, and intelligent transportation systems to manage vehicles in the complex urban network ? through the use of traffic controls, route advisories and road pricing ? to jointly optimize drivers? mobility and the sustainability goals of reducing energy usage and improving air quality. The system developed, MIDAS-CPS, proactively manages the interacting traffic demand and the available transportation supply. A key element of MIDAS-CPS is the data collection and display device PICT that collects each participating driver?s vehicle position, forward images from the vehicle?s dashboard, and communication time stamps, and then displays visualizations of predicted queues ahead, relevant road prices, and route advisories. Given the increasing congestion in most of the urban areas, and the rising costs of constructing traffic control facilities and implementing highway hardware, MIDAS-CPS could revolutionize the way traffic is managed on the urban network since all computing is done via clouds and the drivers instantly get in-vehicle advisories with graphical visualizations of predicted conditions. It is anticipated this would lead to improved road safety and lesser drive stress, besides the designed benefits on the environment, energy consumption, congestion mitigation, and driver mobility. This multidisciplinary project is at the cutting edge in several areas: real-time image processing, real-time traffic prediction and supply/demand management, and cloud computing. Its educational impacts include enhancements of curricula and laboratory experiences at participating universities, workforce development, and student diversity. Additional information on the project is available at http://midas-cps.mobicloud.asu.edu/.
Off
University of Florida
-
National Science Foundation
Submitted by Yafeng Yin on December 18th, 2015
This project designs algorithms for the integration of plug-in hybrid electric vehicles (PEVs) into the power grid. Specifically, the project will formulate and solve optimization problems critical to various entities in the PEV ecosystem -- PEV owners, commercial charging station owners, aggregators, and distribution companies -- at the distribution / retail level. Charging at both commercial charging stations and at residences will be considered, for both the case when PEVs only function as loads, and the case when they can also function as sources, equipped with vehicle-to-home (V2H) or vehicle-to-grid (V2G) energy reinjection capability. The focus of the project is on distributed decision making by various individual players to achieve analytical system-level performance guarantees. Electrification of the transportation market offers revenue growth for utility companies and automobile manufacturers, lower operational costs for consumers, and benefits to the environment. By addressing problems that will arise as PEVs impose extra load on the grid, and by solving challenges that currently impede the use of PEVs as distributed storage resources, this research will directly impact the society. The design principles gained will also be applicable to other cyber-physical infrastructural systems. A close collaboration with industrial partners will ground the research in real problems and ensure quick dissemination of results to the marketplace. A strong educational component will integrate the proposed research into the classroom to allow better training of both undergraduate and graduate students. The details of the project will be provided at http://ee.nd.edu/faculty/vgupta/research/funding/cps_pev.html
Off
University of Notre Dame
-
National Science Foundation
Submitted by Vijay Gupta on December 18th, 2015
Subscribe to Transportation Systems Sector