Abstract
Robotic devices are excellent candidates for delivering repetitive and intensive practice that can restore functional use of the upper limbs, even years after a stroke. Rehabilitation of the wrist and hand in particular are critical for recovery of function, since hands are the primary interface with the world. However, robotic devices that focus on hand rehabilitation are limited due to excessive cost, complexity, or limited functionality. A design and control strategy for such devices that bridges this gap is critical. The goals of the research effort are to analyze the properties and role of passive dynamics, defined by joint stiffness and damping, in the human hand and wrist during grasping and manipulation, and then mimic such properties in a wrist-hand exoskeleton for stroke rehabilitation. The project will culminate with device testing in collaboration with rehabilitation clinicians.
A significant problem in robotic rehabilitation is how to provide assisted movement to the multiple degrees of freedom of the hand in order to restore motor coordination and function, with a system that is practical for deployment in a clinical environment. Armed with a clearer understanding of the mechanisms underlying passive dynamics and control of systems exhibiting such behavior, this project will inform the design of more effective wrist/hand rehabilitation devices that are feasible for clinical use. In addition, the proposed project will create a unique interdisciplinary environment enabling education, training, and co-advising of graduate students, undergraduate research, and significant and targeted outreach activities to underrepresented groups in science and engineering.
Performance Period: 09/01/2011 - 08/31/2016
Institution: William Marsh Rice University
Sponsor: National Science Foundation
Award Number: 1135916
Abstract
This project develops a framework for design automation of cyber-physical systems to augment human interaction with complex systems that integrate across computational and physical environments. As a design driver, the project develops a Body/Brain Computer Interface (BBCI) for the population of functionally locked-in individuals, who are unable to interact with the physical world through movement and speech. The BBCI will enable communication with other humans through expressive language generation and interaction with the environment through robotic manipulators.
Utilizing advances in system-level design, this project develops a holistic framework for design and implementation of heterogeneous human-in-the-loop cyber-physical systems composed of physically distributed, networked components. It will advance BBCI technology by incorporating context aware inference and learning of task-specific human intent estimation in applications involving semi-autonomous robotic actuators and an efficient wireless communication framework.
The results of this project are expected to significantly speed up the design of complex cyber-physical systems. By accelerating the path from idea to prototype, this work shortens the time frame of and cost of development for assistive technology to improve the quality-of-life for functionally locked-in individuals. This project establishes an open prototyping platform and a design framework for rapid exploration of other novel human-in-the-loop applications. The open platform will foster undergraduate involvement in cyber-physical systems research, building confidence and expertise. In addition, new activities at the Museum of Science in Boston will engage visitors to experiment with systematic design principles in context of a brain computer interface application, while offering learning opportunities about basic brain functions.
Performance Period: 09/15/2011 - 08/31/2016
Institution: Worcester Polytechnic Institute
Sponsor: National Science Foundation
Award Number: 1135854
Abstract
The CrAVES project seeks to lay down intellectual foundations for credible autocoding of embedded systems, by which graphical control system specifications that satisfy given open-loop and closed-loop properties are automatically transformed into source code guaranteed to satisfy the same properties. The goal is that the correctness of these codes can be easily and independently verified by dedicated proof checking systems. During the autocoding process, the properties of control system specifications are transformed into proven assertions explicitly written in the resulting source code. Thus CrAVES aims at transforming the extensive safety and reliability analyses conducted by control system engineers, such as those based on Lyapunov theory, into rigorous, embedded analyses of the corresponding software implementations. CrAVES comes as a useful complement to current static software analysis methods, which it leverages to develop independent verification systems.
Computers and computer programs used to manage documents and spreadsheets. They now also interact with physical artifacts (airplanes, power plants, automobile brakes and robotic surgeons), to create Cyber-Physical Systems. Software means complexity and bugs - bugs which can cause real tragedy, far beyond the frozen screens we associate with system crashes on our current PCs. Software autocoding is becoming the de facto recommended practice for many safety-critical applications. CrAVES aims to evolve this towards higher standards of quality and reduced design times and costs. Rigorous, mathematical arguments supporting safety-critical functionalities are the cornerstone of CrAVES. Collaborative programs involving high-school teachers will encourage the transmission of this message to STEM education in high-schools through university programs designed for that purpose.
Performance Period: 09/15/2011 - 08/31/2015
Institution: National Science Foundation
Sponsor: Georgia Tech Research Corporation
Award Number: 1135955
Project URL
Project URL
Abstract
Holonic Multi-Agent Control of Intelligent Power Distribution Systems
This project will demonstrate a Holonic Multiagent System Architecture capable of adaptively controlling future electrical power distribution systems (PDS), which are expected to include a large number of renewable power generators, energy storage devices, and advanced metering and control devices. The project will produce a general, extensible, and secure cyber architecture based on holonic multiagent principles to support adaptive PDS. It will produce new analytical insights to quantify the impact of information delay, quality and flow on the design and analysis of the PDS architecture. Finally, it will develop a novel approach to automating PDS with high penetration of distributed renewable resources for higher efficiency, reliability, security, and resiliency.
The complex nature of future PDS will require them to adapt reactively and proactively to normal and anomalous modes of operation. The architecture produced by this project will be capable of optimizing performance and maintaining the system within operating limits during normal and minor events, such as cloud cover that reduces solar panels output. The architecture will also allow the operation of a distribution system as an island in emergencies, such as hurricanes/earthquakes, grid failures, or terrorist acts.
The project will inspire future engineers via a simulation that will allow students to inject faults, failures, and weather events to see how an intelligent PDS will respond. These activities will combine cyber- and physical expertise, thus creating a workforce prepared for tomorrow?s cyber-physical system challenges. Existing university programs will be used to involve under-represented minorities and U.S. veterans in the project.
Performance Period: 09/01/2011 - 08/31/2016
Institution: Kansas State University
Sponsor: National Science Foundation
Award Number: 1136040
Abstract
This project develops a framework for design automation of cyber-physical systems to augment human interaction with complex systems that integrate across computational and physical environments. As a design driver, the project develops a Body/Brain Computer Interface (BBCI) for the population of functionally locked-in individuals, who are unable to interact with the physical world through movement and speech. The BBCI will enable communication with other humans through expressive language generation and interaction with the environment through robotic manipulators.
Utilizing advances in system-level design, this project develops a holistic framework for design and implementation of heterogeneous human-in-the-loop cyber-physical systems composed of physically distributed, networked components. It will advance BBCI technology by incorporating context aware inference and learning of task-specific human intent estimation in applications involving semi-autonomous robotic actuators and an efficient wireless communication framework.
The results of this project are expected to significantly speed up the design of complex cyber-physical systems. By accelerating the path from idea to prototype, this work shortens the time frame of and cost of development for assistive technology to improve the quality-of-life for functionally locked-in individuals. This project establishes an open prototyping platform and a design framework for rapid exploration of other novel human-in-the-loop applications. The open platform will foster undergraduate involvement in cyber-physical systems research, building confidence and expertise. In addition, new activities at the Museum of Science in Boston will engage visitors to experiment with systematic design principles in context of a brain computer interface application, while offering learning opportunities about basic brain functions.
Gunar Schirner
Gunar Schirner holds a Ph.D. degree (2008) and a M.S. degree (2005) in electrical and computer engineering from the University of California, Irvine. He graduated in computer engineering from the Berufsakademie Berlin, Germany, in 1998. Prior to joining the Northeastern faculty in fall 2009, he was an assistant project scientist at the Center for Embedded Computer Systems (CECS) at the University of California, Irvine. Gunar Schirner also has 5 years of industry experience at Alcatel (now Alcatel-Lucent) where he designed distributed embedded real-time software for telecommunication products. His research interests include embedded system modeling, system-level design, and the synthesis of embedded software.
Performance Period: 09/15/2011 - 08/31/2015
Sponsor: National Science Foundation
Award Number: 1136027
Project URL
Project URL
Abstract
The national transmission networks that deliver high voltage electric power underpin our society and are central to the ongoing transformation of the American energy infrastructure. Transmission networks are very large and complicated engineering systems, and "keeping the lights on" as the transformation of the American energy infrastructure proceeds is a fundamental engineering challenge involving both the physical aspects of the equipment and the cyber aspects of the controls, communications, and computers that run the system. The project develops new principles of cyber-physical engineering by focusing on instabilities of electric power networks that can cause blackouts. It proposes novel approaches to analyze these instabilities and to design cyber-physical control methods to monitor, detect, and mitigate them. The controls must perform robustly in the presence of variability and uncertainty in electric generation, loads, communications, and equipment status, and during abnormal states caused by natural faults or malicious attacks.
The research produces cyber-physical engineering methodologies that specifically help to mitigate power system blackouts and more generally show the way forward in designing robust cyber-physical systems in environments characterized by rich dynamics and uncertainty. Education and outreach efforts involve students at high school, undergraduate, and graduate levels, as well as dissemination of results to the public and the engineering and applied science communities in industry, government and universities.
Performance Period: 09/01/2011 - 05/31/2012
Institution: University of Wisconsin-Madison
Sponsor: National Science Foundation
Award Number: 1135825
Abstract
This project takes the paradigm of cloud computing developed in the cyber-world and puts it into the physical world, to create a cyber-physical computing cloud, SAM-C. Unlike conventional cloud computing, SAM-C servers move in space, meaning, they are vehicles with physical constraints. The server vehicles also have sensors and actuators to create a way to re-organize mobile sensor networks in the paradigm of cloud computing. The project envisions an industry offering sensing as a service provided by the cloud. To enable this new service, the project extends the virtual machine instance fundamental to cloud computing with one new property -- virtual speed. The research terms this augmented entity a virtual vehicle and develops the theories, algorithms and protocols to realize many virtual vehicles over a network of real vehicle servers at scale.
This research impacts the cloud computing industry by providing tools and theories it can use to leverage the many possible mobile server hosts in our society, e.g., cars, planes, people, and emerging vehicles like Unmanned Air Vehicles or drifters. It impacts mobile sensor networks by shifting them from an artifact built for an application to a service provided by a cloud. The inter-disciplinary research team spanning computer science, civil, and mechanical engineering impacts graduate and undergraduate teaching in systems, computer science, and control theory. The project guides K-12 students to build simple electric airplanes with sensors for greenhouse gas measurement thereby introducing young users of computation to cyber-physical cloud computing.
Performance Period: 09/01/2011 - 08/31/2016
Institution: University of California-Berkeley
Sponsor: National Science Foundation
Award Number: 1136141
Project URL
Project URL
Abstract
Cyber-physical systems regulating critical infrastructures, such as electrical grids and water networks, are increasingly geographically distributed, necessitating communication between remote sensors, actuators and controllers. The combination of networked computational and physical subsystems leads to new security vulnerabilities that adversaries can exploit with devastating consequences. A synchronized attack on the interdependent network components and physical plants can create complex and new security vulnerabilities that cannot be addressed by securing the constituent systems individually.
This project takes a holistic view by utilizing the properties of physical systems to design new secure protocols and architectures for cyber-physical systems (CPS) through a unified conceptual framework, which uses models for the physical system and the communication/computation network to define precise attack models and vulnerabilities. These mathematical models are used to design algorithms and protocols with provable operational security guarantees, thus enabling the design of more trustworthy architectures and components. The algorithms, protocols, and architectures are validated on CPS testbeds targeting building, automobile, and smart-grid applications. Additionally, the research is being integrated into the curriculum via the creation of novel coursework combining the underlying control, information theory, cryptography, and embedded system concepts.
By improving the protection of critical cyber-physical infrastructure against emerging threats, this research is expected to provide direct socio-economic benefits, ranging from individual organizations to a national scale. The inter-disciplinary team of this project will integrate teaching and curriculum development with the research, contributing to the training of a new generation of engineers well versed in the design of trustworthy cyber-physical systems.
Performance Period: 09/01/2011 - 08/31/2016
Institution: University of California-Los Angeles
Sponsor: National Science Foundation
Award Number: 1136174
Project URL
Project URL
Abstract
Robotic devices are excellent candidates for delivering repetitive and intensive practice that can restore functional use of the upper limbs, even years after a stroke. Rehabilitation of the wrist and hand in particular are critical for recovery of function, since hands are the primary interface with the world. However, robotic devices that focus on hand rehabilitation are limited due to excessive cost, complexity, or limited functionality. A design and control strategy for such devices that bridges this gap is critical. The goals of the research effort are to analyze the properties and role of passive dynamics, defined by joint stiffness and damping, in the human hand and wrist during grasping and manipulation, and then mimic such properties in a wrist-hand exoskeleton for stroke rehabilitation. The project will culminate with device testing in collaboration with rehabilitation clinicians.
A significant problem in robotic rehabilitation is how to provide assisted movement to the multiple degrees of freedom of the hand in order to restore motor coordination and function, with a system that is practical for deployment in a clinical environment. Armed with a clearer understanding of the mechanisms underlying passive dynamics and control of systems exhibiting such behavior, this project will inform the design of more effective wrist/hand rehabilitation devices that are feasible for clinical use. In addition, the proposed project will create a unique interdisciplinary environment enabling education, training, and co-advising of graduate students, undergraduate research, and significant and targeted outreach activities to underrepresented groups in science and engineering.
Performance Period: 09/01/2011 - 08/31/2017
Institution: University of Texas at Austin
Sponsor: National Science Foundation
Award Number: 1135949
Abstract
The national transmission networks that deliver high voltage electric power underpin our society and are central to the ongoing transformation of the American energy infrastructure. Transmission networks are very large and complicated engineering systems, and "keeping the lights on" as the transformation of the American energy infrastructure proceeds is a fundamental engineering challenge involving both the physical aspects of the equipment and the cyber aspects of the controls, communications, and computers that run the system. The project develops new principles of cyber-physical engineering by focusing on instabilities of electric power networks that can cause blackouts. It proposes novel approaches to analyze these instabilities and to design cyber-physical control methods to monitor, detect, and mitigate them. The controls must perform robustly in the presence of variability and uncertainty in electric generation, loads, communications, and equipment status, and during abnormal states caused by natural faults or malicious attacks.
The research produces cyber-physical engineering methodologies that specifically help to mitigate power system blackouts and more generally show the way forward in designing robust cyber-physical systems in environments characterized by rich dynamics and uncertainty. Education and outreach efforts involve students at high school, undergraduate, and graduate levels, as well as dissemination of results to the public and the engineering and applied science communities in industry, government and universities.
Performance Period: 09/01/2011 - 08/31/2015
Institution: Carnegie-Mellon University
Sponsor: National Science Foundation
Award Number: 1135895