CPS: Medium: Collaborative Research: Networked Sensor Swarm of Underwater Drifters
Lead PI:
Curt Schurgers
Co-PI:
Abstract
The objective of this research is the creation of a coastal observing system that enables dense, in situ, 4D sensing through networked, sensor-equipped underwater drifters. The approach is to develop the technologies required to deploy a swarm of autonomous buoyancy controlled drifters, which are vehicles that can control their depth, but are otherwise carried entirely by the ocean currents. Such Lagrangian sampling promises to deliver a wealth of new data, ranging from applications in physical oceanography (mapping 3D currents), biology (observing the dispersion of larvae and nutrients), environmental science (tracking coastal pollutants and effluents from storm drains), and security (monitoring harbors and ports). This observing system fundamentally requires accurate positions of the drifters (to interpret the spatial correlations of data samples), swarm control algorithms (to achieve desired sampling topologies), and wireless communication (to coordinate between the individual drifters). This research will create distributed techniques to self-localize the drifter swarm, novel swarm control algorithms that enable topology manipulation while purely leveraging the stratified flow environment, and efficient wireless underwater communication for information sharing. This project has significant societal impact and educational elements. Underwater drifter swarms will enable novel insights into a wide array of scientific questions, including understanding plankton transport, accumulation and dispersion as well as monitoring harmful algal blooms. Undergraduates will play an active role in many aspects of this project, thereby offering them a uniquely interdisciplinary experience. Finally, outreach to high school students will occur through the UCSD COSMOS summer program.
Performance Period: 09/15/2010 - 08/31/2014
Institution: University of California-San Diego
Sponsor: National Science Foundation
Award Number: 1035828
Abstract
The objective of this research is to study, develop and implement a comprehensive set of techniques that will eventually enable automobiles to be driven autonomously. The approach taken is to (a) address cyber-physical challenges of reliable, safe and timely operations inside the automobile, (b) tackle a range of physical conditions and uncertainties in the external environment, (c) enable real-time communications to and from the automobile to other vehicles and the infrastructure, and (d) study verification and validation technologies to ensure correct implementations. Intellectual Merits: The project seeks to make basic research contributions in the domains of safety-critical real-time fault-tolerant distributed cyber-physical platforms, end-to-end resource management, cooperative vehicular networks, cyber-physical system modeling and analysis tools, dynamic object detection/recognition, hybrid systems verification, safe dynamic behaviors under constantly changing operating conditions, and real-time perception and planning algorithms. Multiple intermediate capabilities in the form of active safety features will also be enabled. Broader Impacts: Automotive accidents result in about 40,000 fatalities and 3 million injuries every year in the USA. The global annual cost of road injuries is $518 billion. Many accidents are due to humans being distracted. Autonomous vehicles controlled by ever-vigilant cyber-physical systems can lead to significant declines in accidents, deaths and injuries. Autonomous vehicles can also offload driving chores from humans, and make time spent in automobiles more productive. Vehicular networks can help find the best possible routes to a destination in real-time. Broader impacts in this area are amplified by the project's partnerships with companies in the transportation and agricultural technology industries, and in information technology. Broader impacts are also sought through demonstrations and outreach to attract students into science and technology, and in particular to cyber-physical systems research.
Performance Period: 10/01/2010 - 09/30/2016
Institution: Carnegie-Mellon University
Sponsor: National Science Foundation
Award Number: 1035813
CPS: Medium: GOALI: An Architecture Approach to Heterogeneous Verfication of Cyber-Physical Systems
Lead PI:
Bruce Krogh
Co-PI:
Abstract
The objective of this research is to develop new methods for verifying the safety of complex cyber-physical systems based on information derived from the wide variety of models and methods used throughout the design process. The approach is based on a new formalism to represent the architecture of systems with cyber components, physical components, and interconnections between these domains. Diverse engineering models of different aspects of the system will be associated through the cyber-physical architecture for the complete system. Formal logic will be developed to express and reason about inter-model consistency and to infer system-level properties from information derived from the domain-specific models. The project's intellectual merit lies in the creation of a comprehensive, unified framework for verifying properties of systems rich in both cyber and physical components. The new formal logic will make it possible to integrate information from the wide range of engineering domains and technical expertise required to design complex systems. This will lead to a principled, rigorous approach to system-level verification engineering for real-world cyber-physical systems. The application of the new methodology to verify the safety of cooperative intersection collision avoidance systems will have immediate impact on emerging technologies for safer automobile systems. A new interdisciplinary course in engineering and computer science on system-level design of cyber-physical systems will prepare a new cadre of graduates with the cross-cutting skills needed to develop safety-critical systems. Innovative educational modules will also be developed to inspire pre-college students to pursue education and careers in engineering and computer science.
Performance Period: 09/15/2010 - 08/31/2015
Institution: Carnegie-Mellon University
Sponsor: National Science Foundation
Award Number: 1035800
CPS: Medium: Collaborative Research: Cyber-Physical Co-Design of Wireless Monitoring and Control for Civil Infrastructure
Lead PI:
Chenyang Lu
Abstract
The objective of this research is to develop advanced distributed monitoring and control systems for civil infrastructure. The approach uses a cyber-physical co-design of wireless sensor-actuator networks and structural monitoring and control algorithms. The unified cyber-physical system architecture and abstractions employ reusable middleware services to develop hierarchical structural monitoring and control systems. The intellectual merit of this multi-disciplinary research includes (1) a unified middleware architecture and abstractions for hierarchical sensing and control; (2) a reusable middleware service library for hierarchical structural monitoring and control; (3) customizable time synchronization and synchronized sensing routines; (4) a holistic energy management scheme that maps structural monitoring and control onto a distributed wireless sensor-actuator architecture; (5) dynamic sensor and actuator activation strategies to optimize for the requirements of monitoring, computing, and control; and (6) deployment and empirical validation of structural health monitoring and control systems on representative lab structures and in-service multi-span bridges. While the system constitutes a case study, it will enable the development of general principles that would be applicable to a broad range of engineering cyber-physical systems. This research will result in a reduction in the lifecycle costs and risks related to our civil infrastructure. The multi-disciplinary team will disseminate results throughout the international research community through open-source software and sensor board hardware. Education and outreach activities will be held in conjunction with the Asia-Pacific Summer School in Smart Structures Technology jointly hosted by the US, Japan, China, and Korea.
Chenyang Lu

Chenyang Lu is a Professor of Computer Science and Engineering at Washington University in St. Louis. Professor Lu is Editor-in-Chief of ACM Transactions on Sensor Networks and Associate Editor of Real-Time Systems. He also served as Program Chair of IEEE Real-Time Systems Symposium (RTSS 2012) and ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS 2012). Professor Lu is the author and co-author of over 100 research papers with over 9000 citations and an h-index of 45. He received the Ph.D. degree from University of Virginia in 2001, the M.S. degree from Chinese Academy of Sciences in 1997, and the B.S. degree from University of Science and Technology of China in 1995, all in computer science. His research interests include real-time systems, wireless sensor networks and cyber-physical systems.

Performance Period: 10/01/2010 - 09/30/2014
Institution: Washington University
Sponsor: National Science Foundation
Award Number: 1035773
CPS: Medium: Collaborative Research: Body Area Sensor Networks: A Holistic Approach from Silicon to Users
Lead PI:
John Stankovic
Co-PI:
Abstract
The objective of this research is to develop new principles and techniques for adaptive operation in highly dynamic physical environments, using miniaturized, energy-constrained devices. The approach is to use holistic cross-layer solutions that simultaneously address all aspects of the system, from low-level hardware design to higher-level communication and data fusion algorithms to top-level applications. In particular, this work focuses on body area sensor networks as emerging cyber-physical systems. The intellectual merit includes producing new principles regarding how cyber systems must be designed in order to continually adapt and respond to rapidly changing physical environments, sensed data, and application contexts in an energy-efficient manner. New cross-layer technologies will be created that use a holistic bottom-up and top-down design -- from silicon to user and back again. A novel system-on-a-chip hardware platform will be designed and fabricated using three cutting-edge technologies to reduce the cost of communication and computation by several orders of magnitude. The broad impact of this project will enable the wide range of applications and societal benefits promised by body area networks, including improving the quality and reducing the costs of healthcare. The technology will have broad implications for any cyber physical system that uses energy constrained wireless devices. A new seminar series will bring together experts from many fields (including domain experts, such as physicians and healthcare professionals). The key aspects of this work that deal with healthcare have the potential to attract women and minorities to the computer field.
Performance Period: 10/01/2010 - 09/30/2014
Institution: University of Virginia
Sponsor: National Science Foundation
Award Number: 1035771
CPS: Medium: Collaborative Research: Cyber-Physical Co-Design of Wireless Monitoring and Control for Civil Infrastructure
Lead PI:
Shirley Dyke
Abstract
Abstract The objective of this research is to develop advanced distributed monitoring and control systems for civil infrastructure. The approach uses a cyber-physical co-design of wireless sensor-actuator networks and structural monitoring and control algorithms. The unified cyber-physical system architecture and abstractions employ reusable middleware services to develop hierarchical structural monitoring and control systems. The intellectual merit of this multi-disciplinary research includes (1) a unified middleware architecture and abstractions for hierarchical sensing and control; (2) a reusable middleware service library for hierarchical structural monitoring and control; (3) customizable time synchronization and synchronized sensing routines; (4) a holistic energy management scheme that maps structural monitoring and control onto a distributed wireless sensor-actuator architecture; (5) dynamic sensor and actuator activation strategies to optimize for the requirements of monitoring, computing, and control; and (6) deployment and empirical validation of structural health monitoring and control systems on representative lab structures and in-service multi-span bridges. While the system constitutes a case study, it will enable the development of general principles that would be applicable to a broad range of engineering cyber-physical systems. This research will result in a reduction in the lifecycle costs and risks related to our civil infrastructure. The multi-disciplinary team will disseminate results throughout the international research community through open-source software and sensor board hardware. Education and outreach activities will be held in conjunction with the Asia-Pacific Summer School in Smart Structures Technology jointly hosted by the US, Japan, China, and Korea.
Shirley Dyke
Professor Shirley J. Dyke holds a joint appointment in Mechanical Engineering and Civil Engineering at Purdue University. She is the Director of the NASA funded Resilient ExtraTerrestrial Habitat Institute (RETHi) and the Director of Purdue's Intelligent Infrastructure Systems Lab at Bowen Lab. Dyke is the past Editor-in-Chief of the journal Engineering Structures. Her research focuses on the development and implementation of “intelligent” structures, and her innovations encompass structural control technologies, structural health monitoring, real-time hybrid simulation, and machine learning and computer vision for structural damage assessment. She was awarded the Presidential Early Career Award for Scientists and Engineers from NSF (1998), the George Housner Medal by ASCE (2022), the SHM Person of the Year Award (2021), the International Association on Structural Safety and Reliability Junior Research Award (2001) and the ANCRiSST Young Investigator Award (2006). She has also led many educational programs, including Research Experiences for Undergraduates, GK12, and the University Consortium on Instructional Shake Tables. She holds a B.S. in Aeronautical and Astronautical Engineering from the University of Illinois, Champaign-Urbana in 1991 and a Ph.D. in Civil Engineering from the University of Notre Dame in 1996. Dr. Dyke was the Edward C. Dicke Professor of Engineering at Washington University in St. Louis and was on the faculty there from 1996 until 2009. She served as the Co-leader for Information Technology for the NSF-funded Network for Earthquake Engineering Simulation (NEES) building a community-driven Cyberinfastructure Platform for the earthquake engineering community.
Performance Period: 10/01/2010 - 09/30/2015
Institution: Purdue University
Sponsor: National Science Foundation
Award Number: 1035748
CPS: Medium: The Ectokernel Approach: A Composition Paradigm for Building Evolvable Safety-critical Systems from Unsafe Components
Lead PI:
Tarek Abdelzaher
Co-PI:
Abstract
The objective of this research is to develop a new approach for composition of safety-critical cyber-physical systems from a small code base of verified components and a large code base of unverified commercial off-the-shelf components. The approach is novel in that it does not require generating the entire code base from formal languages, specifications, or models and does not require verification to be applied to all code. Instead, an explicit goal is to accommodate large amounts of legacy code that is typically too complex to verify. The project introduces a set of verified component wrappers around existing unverified code, such that specified global system properties hold. The intellectual merit of the project lies in its innovative approach for managing component interactions. Unexpected interactions are the primary source of failure in cyber-physical systems. A fundamental conceptual challenge is to understand the different interaction spaces of cyber-physical system components and determine a set of trigger conditions when certain interactions must be restricted to prevent failure. The project develops analysis techniques that help understand the different interaction types and provides component wrappers to restrict them when necessary. Broader impact lies in significantly reducing the design and composition effort for the next generation of safety-critical embedded systems. A variety of student projects are being offered to undergraduates and graduate students. The researchers especially encourage women and minorities to participate. Outreach activity, such as hosting K-12 students on school field/science days, further strengthen the educational component. Technology transfer to John Deere is expected.
Performance Period: 08/15/2010 - 07/31/2014
Institution: University of Illinois at Urbana-Champaign
Sponsor: National Science Foundation
Award Number: 1035736
CPS: Medium: Addressing Design and Human Factors Challenges in Cyber Transportation Systems
Lead PI:
Chunming Qiao
Co-PI:
Abstract
This project has two closely related objectives. The first is to design and evaluate new Cyber Transportation Systems (CTS) applications for improved traffic safety and traffic operations. The second is to design and develop an integrated traffic-driving-networking simulator. The project takes a multi-disciplinary approach that combines cyber technologies, transportation engineering and human factors. While transportation serves indispensible functions to society, it does have its own negative impacts in terms of accidents, congestion, pollution, and energy consumption. To improve traffic safety, the project will develop and evaluate novel algorithms and protocols for prioritization, delivery and fusion of various warning messages so as to reduce drivers? response time and workload, prevent conflicting warnings, and minimize false alarms. To improve traffic operations, the project will focus on the design of next generation traffic management and control algorithms for both normal and emergency operations (e.g. during inclement weather and evacuation scenarios). Both human performance modeling methods and human subjects? experimental methods will be used to address the human element in this research. As the design and evaluation of CTS applications requires an effective development and testing platform linking the human, transportation and cyber elements, the project will also design and develop a simulator that combines the main features of a traffic simulator, a networking simulator and a driving simulator. The integrated simulator will allow a human driver to control a subject vehicle in a virtual environment with realistic background traffic, which is capable of communicating with the driver and other vehicles with CTS messages. Background traffic will be controlled by a realistic driver model based on our human factors research that accounts for CTS messages? impact on driver behavior. Intellectual Merits: The project explicitly considers human factors in the design and evaluation of CTS safety and operations applications, a topic which has not received adequate attention. Moreover, the proposed integrated simulator represents a first-of-a-kind simulator with unique features that can reduce the design and evaluation costs of new CTS applications. Broader Impacts: The proposed research can improve the safety, efficiency and environmental-friendless of transportation systems, which serve as the very foundation of modern societies and directly affects the quality of life. The integrated simulator will be used as a tool for teenage and elderly driver education and training, and to inspire minority, middle and high school students to pursue careers in math, science, and computer-related fields
Chunming Qiao

 

Professor Chunming Qiao directs the Lab for  Advanced Network Design, Analysis, and Research (LANDER), which conducts cutting-edge research with current foci on  optical networking and survivability/availability in cloud computing, active-safety and infotainment in transportation systems, and low-cost and low-power sensors and mobile (robotic) sensor networks. He has published about 100 and 160 papers in leading technical journals and conference proceedings,  respectively, with an h-index above 50 (according to Google Scholar). He pioneered research on  Optical Internet, and in particular, the optical burst switching (OBS). One of his paper on OBS alone has been cited for more than 2000 times.   In addition, his work on integrated cellular and ad hoc relaying systems  (iCAR), started in 1999, is recognized as the harbinger for today's push towards the convergence between  heterogeneous wireless technologies, and has been featured in BusinessWeek and Wireless Europe,  as well as at the websites of New Scientists and CBC. His Research has been funded by ten NSF grants including two ITR awards, and by major IT and telecommunications companies including Alcatel Research, Fujitsu Labs, Cisco, Google, NEC labs, Nokia, Nortel Networks, Sprint Advanced Technology Lab, and Telcordia, as well as Industrial  Technology Research Institute (in Taiwan).   Dr. Qiao has given a dozen of keynotes, and numerous invited talks on the above research topics.  He has chaired and co-chaired a dozen of international conferences and workshops.  He was an editor of IEEE Transactions On Networking and Trans on Paralle and Distributed Sytems,  and a guest-editor  for several IEEE Journal on Selected Areas in Communications (JSAC) issues. He was the chair of the IEEE Technical  Committee on High Speed Networks (HSN) and \the IEEE  Subcommittee on Integrated Fiber and Wireless  Technologies (FiWi) which he founded. He was elected to IEEE Fellow for his contributions to optical and wireless network architectures and protocols.
Performance Period: 09/15/2010 - 08/31/2014
Institution: SUNY at Buffalo
Sponsor: National Science Foundation
Award Number: 1035733
CPS: Large: Assuring the Safety, Security and Reliability of Medical Device Cyber Physical Systems
Lead PI:
Insup Lee
Co-PI:
Abstract
The objective of this research is to establish a new development paradigm that enables the effective design, implementation, and certification of medical device cyber-physical systems. The approach is to pursue the following research directions: 1) to support medical device interconnectivity and interoperability with network-enabled control; 2) to apply coordination between medical devices to support emerging clinical scenarios; 3) to ?close the loop? and enable feedback about the condition of the patient to the devices delivering therapy; and 4) to assure safety and effectiveness of interoperating medical devices. The intellectual merits of the project are 1) foundations for rigorous development, which include formalization of clinical scenarios, operational procedures, and architectures of medical device systems, as well as patient and caregiver modeling; 2) high-confidence software development for medical device systems that includes the safe and effective composition of clinical scenarios and devices into a dynamically assembled system; 3) validation and certification of medical device cyber-physical systems; and 4) education of the next-generation of medical device system developers who must be literate in both computational and physical aspects of devices. The broader impacts of the project will be achieved in three ways. Novel design methods and certification techniques will significantly improve patient safety. The introduction of closed-loop scenarios into clinical practice will reduce the burden that caregivers are currently facing and will have the potential of reducing the overall costs of health care. Finally, the educational efforts and outreach activities will increase awareness of careers in the area of medical device systems and help attract women and under-represented minorities to the field.
Performance Period: 10/01/2010 - 09/30/2016
Institution: University of Pennsylvania
Sponsor: National Science Foundation
Award Number: 1035715
Project URL
CPS: Medium: Timing-Centric Software
Lead PI:
Edward Lee
Co-PI:
Abstract
The objective of this research is to define programming abstractions with temporal semantics for distributed cyber-physical systems. The approach is to create a coordination language for distributed embedded software that blends naturally with models of physical dynamics. The coordination language is based on a rigorous discrete-event concurrent model of computation. It will be used by system designers to construct models from which software implementations are derived. The objective is distributed software that, if it compiles for a platform, delivers precisely the temporal semantics specified in the model. Intellectual merit: This project addresses the core abstractions of computing, which throughout the 20th century, have abstracted away time, and of physical dynamics, which have omitted software and network behaviors. For cyber-physical systems, both are inappropriate. This project is developing new time-centric abstractions for software, programming models, analysis techniques, and integration of software and network models with physical dynamics. Broader impacts: Besides the considerable economic and societal impact of CPS in general, the project is expected to have considerable impact on engineering and computer science education. Its focus on engineering applications and on sound computer science methods will erode the boundaries between these disciplines that hamper competitiveness of our students. A new generation of students is needed to dramatically improve our energy efficiency, manufacturing capabilities, transportation efficiency, instrumentation prowess (and hence, scientific knowledge), and infrastructure robustness. Because of the broad societal implications of the work, it will help attract to engineering and computer science a more diverse talent pool.
Performance Period: 09/15/2010 - 08/31/2014
Institution: University of California-Berkeley
Sponsor: National Science Foundation
Award Number: 1035672
Project URL
Subscribe to