CPS: Small: A Real-Time Cognitive Operating System
Lead PI:
Dana Ballard
Abstract
The objective of this research is to develop a real-time operating system for a virtual humanoid avatar that will model human behaviors such as visual tracking and other sensori-motor tasks in natural environments. This approach has become possible to test because of the development of theoretical tools in inverse reinforcement learning (IRL) that allow the acquisition of reward functions from detailed measurements of human behavior, together with technical developments in virtual environments and behavioral monitoring that allow such measurements to be obtained. The central idea is that complex behaviors can be decomposed into sub-tasks that can be considered more or less independently. An embodied agent learns a policy for actions required by each sub-task, given the state information from sensori-motor measurements, in order to maximize total reward. The reward functions implied by human data can be computed and compared to those of an avatar model using the newly-developed IRL technique, constituting an exacting test of the system. The broadest impact of the project would provide a formal template for further investigations of human mental function. Modular RL models of human behavior would allow realistic humanoid avatars to be used in training for emergency situations, conversation, computer games, and classroom tutoring. Monitoring behavior in patients with diseases that exhibit unusual eye movements (e.g., Tourettes, Schizophrenia, ADHD) and unusual body movement patterns (e.g., Parkinsons), should lead to new diagnostic methods. In addition the regular use of the laboratory in undergraduate courses and outreach programs promotes diversity.
Dana Ballard
Performance Period: 09/01/2009 - 08/31/2012
Institution: University of Texas at Austin
Sponsor: National Science Foundation
Award Number: 0932277
Abstract
The goal of this project is to develop a novel cyber-physical system (CPS) for performing multimodal image-guided robot-assisted minimally invasive surgeries (MIS). The approach is based on: (1) novel quantitative analysis of multi-contrast data, (2) control that uses this information to maneuver conformable robotic manipulators, while adjusting on-the-fly scanning parameters to acquire additional information, and (3) human-information/machine-interfacing for comprehensive appreciation of the physical environment. The intellectual merit arises from the development of: (1) a CPS that relies on "real" and "real-time" data, minimizing parametric and abstracted assumptions, extracts and matures information from a dynamic physical system (patient and robot) by combining management of data collection (at the physical sensor site) and data analysis (at the cyber site), (2) "smart sensing", to control data acquisition based on disruptive or situation altering events, (3) control coordination by interlacing sensing, control and perception, and the incorporation of steerable tools. The societal impact arises from contributions to a leap in MIS: from "keyhole" visualization (i.e., laparoscopy) to in-situ real-time image guidance, thereby enabling a wider range of MIS. This will directly benefit patients and their families (faster recovery/reduced trauma). Economic impact arises from the cost-effectiveness of MIS to the health care system, faster patient return to the workplace, and technology commercialization. The project will integrate research and education, diversity and outreach, by enhancing current and introducing new research-intensive courses in Cyber-physical Systems, Medical Imaging and Medical Robotics, and dissemination via trans-institutional collaborations, a comprehensive web site, multimedia web-seminars, and distribution to high schools.
Nikolaos Tsekos
Performance Period: 09/01/2009 - 06/30/2016
Institution: University of Houston
Sponsor: National Science Foundation
Award Number: 0932272
CPS: Large: Cybernetic Interfaces for the Restoration of Human Movement through Functional Electrical Stimulation
Lead PI:
Eric Perreault
Co-Pi:
Abstract
The objective of this research is to develop an intuitive user interface for functional electrical stimulation (FES), which uses surgically-implanted electrodes to stimulate muscles in spinal cord-injured (SCI) patients. The challenge is to enable high-level tetraplegic patients to regain the use of their own arm. The approach is to develop a multi-modal Bayesian user-intent decoder; use natural muscle synergies to generate appropriate low-dimensional muscle activation signals in a feedforward controller; develop a feedback controller to enhance the performance of the feedforward controller; and test the system with SCI patients on daily living tasks, such as reaching, grasping, and eating. The challenge problem of restoring arm use to SCI patients will lead to new design principles for cyber-physical systems interfacing neural and biological systems with engineered computation and electrical power systems. The tight integration of the proposed user interface and controller with the users own control system requires a deep understanding of biological design principles such as nested feedback loops at different time and length scales, noisy signals, parallel processing, and highly coupled neuromechanical systems. This work will lead to new technology that dramatically improves the lives of spinal cord-injured patients. These patients often have no cognitive impairment and have long life spans after injury. The goal is to enable these patients to eat, reach, and grasp nearby objects. These tasks are critical for independent living and quality of life. This work will also help train a new generation of students in human-machine interfaces at the undergraduate, graduate, and postdoctoral levels.
Eric Perreault
Performance Period: 10/01/2009 - 09/30/2015
Institution: Rehabilitation Institute of Chicago
Sponsor: National Science Foundation
Award Number: 0932263
CPS: Small: Collaborative Research: Localization and System Services for SpatioTemporal Actions in Cyber-Physical Systems
Lead PI:
Anish Arora
Abstract
CPS: Small: Collaborative Research: Localization and System Services for SpatioTemporal Actions in Cyber-Physical Systems The objective of this research is to develop models, methods and tools for capturing and processing of events and actions in cyber-physical systems (CPS) in a manner that does not violate the underlying physics or computational logic. The project approach uses a novel notion of cyber-physical objects (CPO) to capture the mobility and localization of computation in cyber-physical systems using recent advances in geolocation and the Internet infrastructure and supports novel methods for spatiotemporal resource discovery. Project innovations include a model for computing spatiotemporal relationships among events of interests in the physical and logical parts of a CPS, and its use in a novel cyberspatial reference model. Using this model the project builds a framework for locating cyber-physical application services and an operating environment for these services. The project plan includes an experimental platform to demonstrate capabilities for building new OS services for CPS applications including collaborative control applications drawn from the intermodal transportation system. The project will enable design and analysis of societal scale applications such as the transportation and electrical power grid that also include a governance structure. It will directly contribute to educating an engineering talent pool by offering curricular training that range from degree programs in embedded systems to seminars and technology transfer opportunities coordinated through the CalIT2 institute at UCSD and the Institute for Sensing Systems (ISS) at OSU. The team will collaborate with the non-profit Milwaukee Institute to explore policies and mechanisms for enterprise governance systems.
Anish Arora
Performance Period: 09/15/2009 - 08/31/2012
Institution: Ohio State University Research Foundation
Sponsor: National Science Foundation
Award Number: 0932216
CPS: Small: Generation of natural movement for a multiple degrees-of-freedom robot driven by stochastic cellular actuators
Lead PI:
Jun Ueda
Abstract
The objective of this research is to understand mechanisms for generating natural movements of skeletal mechanisms driven by stochastically-controlled, biologically-inspired actuators. The approach is to verify the hypothesis that the variability associated with high redundancy and the stochastic nature of the actuation is key to generating natural movements. This project seeks to: (i) develop a method to model and characterize actuator array topologies; (ii) develop a method to analyze the force variability of stochastic actuator arrays; (iii) develop an analytical method to generate movements for a robot with multiple degrees of freedom by minimizing the effect of variability; and (iv) demonstrate the validity of the approach through the development of a robotic arm driven by multiple stochastic array actuators. With respect to intellectual merit, the study of inhomogeneous stochastic actuator network topologies inspired by neuromuscular systems could find the "missing links" that bridge the gap between biological natural movements and the ones in artificial systems. Potential results could impact other research areas, including robust computer networks, robust immune systems, and redundant muscle coordination. With respect to broader impacts, a new graduate-level course provides students in engineering and science with a comprehensive and multidisciplinary education in the underlying principles, cutting-edge applications, and societal impacts of biologically-inspired robotics. Outreach activities include an interactive educational program for K-12 students and a workshop for high-school students and their mentors on robot development. International collaboration with Tokyo University of Science, Japan, will be initiated.
Jun Ueda
Performance Period: 09/01/2009 - 08/31/2013
Institution: GA Tech Research Corporation - GA Institute of Technology
Sponsor: National Science Foundation
Award Number: 0932208
CPS: Medium: Collaborative Research: The Foundations of Implicit and Explicit Communication in Cyberphysical Systems
Lead PI:
Venkatesh Saligrama
Abstract
Proposal Title: CPS:Medium:Collaborative Research: The Foundations of Implicit and Explicit Communication in Cyberphysical Systems Institution: University of California-Berkeley Abstract Date: 07/30/09 The objective of this research is to develop the theoretical foundations for understanding implicit and explicit communication within cyber-physical systems. The approach is two-fold: (a) developing new information-theoretic tools to reveal the essential nature of implicit communication in a manner analogous to (and compatible with) classical network information theory; (b) viewing the wireless ecosystem itself as a cyber-physical system in which spectrum is the physical substrate that is manipulated by heterogeneous interacting cyber-systems that must be certified to meet safety and performance objectives. The intellectual merit of this project comes from the transformative technical approaches being developed. The key to understanding implicit communication is a conceptual breakthrough in attacking the unsolved 40-year-old Witsenhausen counterexample by using an approximate-optimality paradigm combined with new ideas from sphere-packing and cognitive radio channels. These techniques open up radically new mathematical avenues to attack distributed-control problems that have long been considered fundamentally intractable. They guide the development of nonlinear control strategies that are provably orders-of-magnitude better than the best linear strategies. The keys to understanding explicit communication in cyber-physical systems are new approaches to active learning, detection, and estimation in distributed environments that combine worst-case and probabilistic elements. Beyond the many diverse applications (the Internet, the smart grid, intelligent transportation, etc.) of heterogeneous cyber-physical systems themselves, this research reaches out to wireless policy: allowing the principled formulation of government regulations for next-generation networks. Graduate students (including female ones) and postdoctoral scholars will be trained and research results incorporated into both the undergraduate and graduate curricula. NATIONAL SCIENCE FOUNDATION Proposal Abstract Proposal:0932410 PI Name:Sahai, Anant Printed from
Venkatesh Saligrama
Performance Period: 09/15/2009 - 08/31/2014
Institution: Trustees of Boston University
Sponsor: National Science Foundation
Award Number: 0932114
CPS: Small: Non-Volatile Computing for Embedded Cyber-Physical Systems
Lead PI:
Gookwon Suh
Co-Pi:
Abstract
The objective of this research is to develop non-volatile computing devices, which allow the power source to be cut off at any time, and yet resume regular operation without loss of information when the power comes back. The approach is to replace all critical memory components with non-volatile units so that computing state is maintained over power interruptions. The advancement in new Flash memory devices makes this approach feasible by enabling low-voltage program/erase (P/E) around ±2V and a long (projected >1016) cycling endurance to be integrated into CMOS technology. This research effort seeks to establish a new paradigm of computing where non-volatile memory units are used pervasively to enhance reliability against power source instability, energy-efficiency, and security. The non-volatile computing devices are especially useful for embedded cyber-physical systems enabling long running computations and data collection even with unreliable power sources. The technologies developed from this project can also benefit conventional architecture in its power optimization and internal security code generation. The project is a close collaboration between computer architecture and CMOS technology development groups, where all levels in the design hierarchy will be visited for system and technology evaluation. This project integrates its research efforts with education by developing an undergraduate and Master curriculum that spans over the vertical design hierarchy in microprocessors. This vertical education will better prepare future work force in tackling tremendous design challenges spanning many layers of microprocessors. The results from this project will be made widely available to both industry and academia.
Gookwon Suh
Performance Period: 09/01/2009 - 08/31/2014
Institution: Cornell University
Sponsor: National Science Foundation
Award Number: 0932069
CPS: Medium: Programmable Second Skin to Re-educate Injured Nervous Systems
Lead PI:
Eugene Goldfield
Abstract
Objectives and approaches. The objective of this research is to create a novel Cyber-Physical System, a self-reconfiguring ?second skin orthotic sleeve? consisting of programmable materials. The orthotic sleeve, worn over one or more limbs of brain-injured individuals, may restore brain function by promoting enriched exploration of self-produced limb movements. The approach consists of three steps (1) micro-fabricating sheets with embedded sensors and muscle-like collections of force-producing actuators, (2) conducting longitudinal recordings of kicking by typically developing and preterm brain-injured infants who wear a sensing, but not actuated micro-fabricated second skin, and (3) developing biologically-inspired programming techniques to help determine an algorithm with which the second skin embedded actuators may adaptively assist the ever-changing developmental pattern of infant kicking. The technology can be applied to many mobility-impaired populations,including children and adults with brain injury, the ageing population, and injured soldiers. The project will inform basic scientific and engineering research in areas such as formation of architectural structures by large-scale multi-agent robotic systems, and self-organization of swarming small-scale agents that act autonomously in cooperation with biological systems. The multi-institutional effort of this research endeavor will positively impact undergraduate and graduate science education via explorations of the intersection of biology and computation in cyber-physical systems. Innovation, teamwork, and the value of communication are encouraged. These efforts will promote education of an American work force that is technically expert, scientifically comprehensive, and socially aware to sustain national excellence in a future increasingly based on technologically complex systems.
Eugene Goldfield
Performance Period: 09/01/2009 - 08/31/2013
Institution: Children's Hospital Corporation
Sponsor: National Science Foundation
Award Number: 0932015
CPS: Small: Programming Environment and Architecture for Situational Awareness and Response
Lead PI:
Robert Fowler
Abstract
The objective of this research is to investigate and implement a software architecture to improve productivity in the development of rapidly deployable, robust, real-time situational awareness and response applications. The approach is based on a modular cross-layered architecture that combines a data-centric descriptive programming model with an overlay-based communication model. The cross-layer architecture will promote an efficient implementation. Simultaneously, the data-centric programming model and overlay-based communication model will promote a robust implementation that can take advantage of heterogeneous resources and respond to different failures. There is currently no high-level software architecture that meets the stringent requirements of many situational awareness and response applications. The proposed project will fill this void by developing a novel data-centric programming model that spans devices with varying computational and communication capabilities. Similarly, the overlay communication model will extend existing work by integrating network resources with the programming model. This cross-layer design will promote the implementation of efficient and robust applications. This research will benefit society by providing emergency responders with software tools that present key information in a timely fashion. This, in turn, will increase safety and reduce economic and human loss during emergencies. The productivity gains in deploying sensors and mobile devices will benefit other domains, such as field research using sensor networks. Software will be released under an open-source license to promote the use by government agencies, research institutions, and individuals. Products of this research, including the software, will be used in courses at the University of North Carolina.
Robert Fowler
Performance Period: 09/01/2009 - 06/30/2014
Institution: University of North Carolina at Chapel Hill
Sponsor: National Science Foundation
Award Number: 0932011
CPS: Small: Collaborative Research: Establishing Integrity in Dynamic Networks of Cyber Physical Devices
Lead PI:
Vinod Ganapathy
Abstract
The objective of this research is to develop energy-efficient integrity establishment techniques for dynamic networks of cyber physical devices. In such dynamic networks, devices connect opportunistically and perform general-purpose computations on behalf of other devices. However, some devices may be malicious in intent and affect the integrity of computation. The approach is to develop new trust establishment mechanisms for dynamic networks. Existing trusted computing mechanisms are not directly applicable to cyber physical devices because they are resource-intensive and require devices to have special-purpose hardware. This project is addressing these problems along three research prongs. The first is a comprehensive study of the resource bottlenecks in current trust establishment protocols. Second, the insights from this study are being used to develop resource-aware attestation protocols for cyber physical devices that are equipped with trusted hardware. Third, the project is developing new trust establishment protocols for cyber physical devices that may lack trusted hardware. A key outcome of the project is an improved understanding of the tradeoffs needed to balance the concerns of security and resource-awareness in dynamic networks. Dynamic networks allow cyber physical devices to form a highly-distributed, cloud-like infrastructure for computations involving the physical world. The trust-establishment mechanisms developed in this project encourage devices to participate in dynamic networks, thereby unleashing the full potential of dynamic networks. This project includes development of dynamic networking applications, such as distributed gaming and social networking, in undergraduate curricula and course projects, thereby fostering the participation of this key demographic.
Vinod Ganapathy
Performance Period: 09/01/2009 - 08/31/2014
Institution: Rutgers University New Brunswick
Sponsor: National Science Foundation
Award Number: 0931992
Subscribe to