CPS: Medium: Collaborative Research: Enabling and Advancing Human and Probabilistic Context Awareness for Smart Facilities and Elder Care
Lead PI:
Anind Dey
Abstract
The objective of this research is to enable cyberphysical systems (CPS) to be context-aware of people in the environment and to use data from real-world probabilistic sensors. The approach is (1) to use radio tomography (RT) and RFID to provide awareness (location and potential identification) of every person in a building or area, and (2) to develop new middleware tools to enable context-aware computing systems to use probabilistic data, thus allowing new applications to exploit sometimes unreliable estimates of the environment.The intellectual merit of the proposal is in the development of new algorithms and models for building-scale RT with low radio densities and across multiple frequencies; the development of efficient multichannel access protocols for rapid and adaptive peer-to-peer measurements; the development of space-time and probabilistic data representations for use in stream-based context awareness systems and for merging ID and non-ID data; (4) and the development of a human context-aware software development toolkit that interfaces between probabilistic data and context-aware applications. The proposal impacts broadly the area of Cyberphysical systems that reason about human presence and rely on noisy and potentially ambiguous (practical) sensors. The research has additional dramatic impact in: (1) smart facilities which automatically enforce safety, privacy, and security procedures, increasing the ability to respond in emergency situations and prevent accidents and sabotage; (2) elder care, to monitor for physical or social decline so that effective intervention can be implemented, extending the period elders can live in their own home, without pervasive video surveillance.
Anind Dey
Performance Period: 09/15/2010 - 08/31/2014
Institution: Carnegie Mellon University
Sponsor: National Science Foundation
Award Number: 1035152
CPS: The Third Working Conference on Verified Software
Lead PI:
Natarajan Shankar
Abstract
This award supports the Third IFIP Working Conference on "Verified Software: Theories, Tools, and Experiments (VSTTE 2010)", August 16-19, 2010, hosted by Heriot-Watt University, Edinburgh Scotland. The construction of reliable software poses one of the most significant scientific and engineering challenges of the 21st century. Professor Tony Hoare of Microsoft Research has proposed the creation of a program verifier as a grand challenge for computer science and outlined an international program of research combining many disciplines such as the theory and implementation of programming languages, formal methods, program analysis, and automated theorem proving. The VSTTE conference series was established by the research community in response to this challenge. The VSTTE 2010 program includes two workshops focusing on the areas of: (1) theories, and (2) tools and experiments. This award is enabled through support provided by the NITRD High Confidence Software and Systems (HCSS) interagency Coordinating Group.
Natarajan Shankar
Performance Period: 09/01/2010 - 08/31/2013
Institution: SRI International
Sponsor: National Science Foundation
Award Number: 1033105
CPS Grantees Workshop
Lead PI:
Monica Anderson
Abstract
Abstract The objective of this proposal is to hold a grantees meeting on July 8-9, 2009 focused on the potential of cyber-physical systems and their impact on our lives. The event, "Cyber-Physical Systems" Leading the Way to a Smarter, Safer Future for Anyone, Anywhere, Anytime?, This is a two-day event: the first day will take place at the National Science Foundation and will be dedicated to a dry-run session; the second day of the CPS event will take place at Capitol Hill and will include a luncheon with the members of the Senate followed by demonstrations and poster presentations of research work related to CPS. The invited audience includes 25 members of the Senate Commerce Committee and their staffs. Intellectual merit: The demonstration and posters will showcase state-of-the-art and innovative research projects describing the potential benefits of CPS to the society, while highlighting the research challenges that need to be address in order to realize the CPS vision. Broader Impact: The Grantees meeting will provide an opportunity to showcase the current accomplishments in the CPS to some of the senior senators, members of the Senate Commerce Committee and their staffs and to the NSF staff. The workshop will have participation from 12 institutions and their post Docs, graduate students and undergraduate students. It also includes participation and demonstration by the High school students. This will be a great opportunity for them to interact with other participants and learn about many exciting opportunities in the CPS area.
Monica Anderson
Performance Period: 08/01/2009 - 01/31/2012
Institution: University of Alabama Tuscaloosa
Sponsor: National Science Foundation
Award Number: 0947792
CPS: Small: Random Matrix Recursions and Estimation and Control over Lossy Networks
Lead PI:
Babak Hassibi
Abstract
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). Many of the future applications of systems and control that will pertain to cyber-physical systems are those related to problems of (possibly) distributed estimation and control of multiple agents (both sensors and actuators) over networks. Examples include areas such as distributed sensor networks, control of distributed autonomous agents, collision avoidance, distributed power systems, etc. Central to the study of such systems is the study of the behavior of random Lyapunov and Riccati recursions (the analogy is to traditional LTI systems where deterministic Lyapunov and Riccati recursions and equations play a prominent role). Unfortunately, to date, the tools for analyzing such systems are woefully lacking, ostensibly because the recursions are both nonlinear and random, and hence intractable if one wants to analyze them exactly. The methodology proposed in this work is to exploit tools from the theory of large random matrices to find the asymptotic eigendistribution of the matrices in the random Riccati recursions when the number of states in the system, n, is large. In many cases, the eigendistribution contains sufficient information about the overall behavior of the system. Stability can be inferred from the eigenanalysis. The mean of the eigenvalues is simply related to the mean of the trace (i.e., the mean-square-error of the system), whereas the support set of the eigendistribution says something about best- and worst-case performances of the system. Furthermore, a general philosophy of this approach is to identify and exhibit the universal behavior of the system, provided such a behavior does exist. Here, "universal" means behavior that does not depend on the microscopic details of the system (where losses occur, what the exact topology of the network or underlying distributions are), but rather on some simple macroscopic properties. A main idea of the approach is to replace a high-dimensional matrix-valued nonlinear and stochastic recursion by a scalar-valued deterministic functional recursion (involving an appropriate transform of the eigendistribution), which is much more amenable to analysis and computation. The project will include course development and the recruitment of women and minority students to research. It will also make use of undergraduate and underrepresented minority student researchers through Caltech's SURF and MURF programs.
Babak Hassibi
Performance Period: 10/01/2009 - 09/30/2013
Institution: California Institute of Technology
Sponsor: National Science Foundation
Award Number: 0932428
CPS: Medium: Collaborative Research: The Foundations of Implicit and Explicit Communication in Cyberphysical Systems
Lead PI:
Anant Sahai
Abstract
The objective of this research is to develop the theoretical foundations for understanding implicit and explicit communication within cyber-physical systems. The approach is two-fold: (a) developing new information-theoretic tools to reveal the essential nature of implicit communication in a manner analogous to (and compatible with) classical network information theory; (b) viewing the wireless ecosystem itself as a cyber-physical system in which spectrum is the physical substrate that is manipulated by heterogeneous interacting cyber-systems that must be certified to meet safety and performance objectives. The intellectual merit of this project comes from the transformative technical approaches being developed. The key to understanding implicit communication is a conceptual breakthrough in attacking the unsolved 40-year-old Witsenhausen counterexample by using an approximate-optimality paradigm combined with new ideas from sphere-packing and cognitive radio channels. These techniques open up radically new mathematical avenues to attack distributed-control problems that have long been considered fundamentally intractable. They guide the development of nonlinear control strategies that are provably orders-of-magnitude better than the best linear strategies. The keys to understanding explicit communication in cyber-physical systems are new approaches to active learning, detection, and estimation in distributed environments that combine worst-case and probabilistic elements. Beyond the many diverse applications (the Internet, the smart grid, intelligent transportation, etc.) of heterogeneous cyber-physical systems themselves, this research reaches out to wireless policy: allowing the principled formulation of government regulations for next-generation networks. Graduate students (including female ones) and postdoctoral scholars will be trained and research results incorporated into both the undergraduate and graduate curricula.
Anant Sahai
Performance Period: 09/15/2009 - 08/31/2013
Institution: University of California-Berkeley
Sponsor: National Science Foundation
Award Number: 0932410
CPS: Medium: A Logical Framework for Self-Optimizing Networked Cyber-Physical Systems
Lead PI:
Mark-Oliver Stehr
Co-Pi:
Abstract
The objective of this research is to develop foundations for the newly emerging generation of networked cyber-physical systems. The approach is based on a distributed logic of cyber-physical systems together with distributed cross-layer control and optimization strategies to enabled local actions to maintain or improve the satisfaction of system goals. The framework will be implemented first in simulation, then on one of SRI's robot platforms, and demonstrated in the context of networked mobile robotic teams, a particularly challenging application. Networked cyber-physical systems present many intellectual challenges not suitably addressed by existing computing paradigms. They must achieve system-wide objectives through local, asynchronous actions, using distributed control loops through the environment. A key challenge is to develop a robust computational foundation that supports a wide spectrum of system operation between autonomy and cooperation to adapt to uncertainties, changes, failures, and resource constraints, in particular to limitations of computational, energy, and networking resources. The results will have a variety of applications including distributed surveillance, instrumented pervasive spaces, crisis response, medical systems, green buildings, self-assembling structures, networked space/satellite missions, and distributed critical infrastructure monitoring and control. There is also potential for integration into SRI's commercial robotic platform. Results will be publicly available from a project web site, and tutorial material will be developed for students and researchers. A multi-disciplinary research seminar will be sponsored by SRI. The coPI is female with a strong record of mentoring female students and young researchers, including the project's female postdoc.
Mark-Oliver Stehr
Performance Period: 09/01/2009 - 08/31/2014
Institution: SRI International
Sponsor: National Science Foundation
Award Number: 0932397
CPS: Small: Community-based Sense & Respond -- Theory and Applications
Lead PI:
Andreas Krause
Co-Pi:
Abstract
The objective of this research is to address a fundamental question in cyber-physical systems: What is the ideal structure of systems that detect critical events such as earthquakes by using data from large numbers of sensors held and managed by ordinary people in the community? The approach is to develop theory about widely-distributed sense and respond systems, using dynamic and possibly unreliable networks using sensors and responders installed and managed by ordinary citizens, and to apply the theory to problems important to society, such as responding to earthquakes. Intellectual Merit: This research develops theory and prototype implementations of community-based sense-and-respond systems that enable people help one another in societal crises. The number of participants in such systems may change rapidly; some participants may be unreliable and some may even deliberately attack systems; and the structures of networks change as crises unfold. Such systems must function in rare critical situations; so designs, analyses and tests of these systems must give confidence that they will function when the crisis hits. The proposed research will show how to design systems with organic growth, unreliable components and connections, security against rogue components, and methods of demonstrating reliability. Broader Impact: People want to help one another in a crisis. Cheap sensors, mobile phones, and laptops enable people to use information technology to help. This research empowers ordinary citizens collaborate to overcome crises. The researchers collaborate with the US Geological Service, Southern California Edison, and Microsoft, and will host 3,000 students at a seismic facility
Andreas Krause
Performance Period: 09/01/2009 - 08/31/2013
Institution: California Institute of Technology
Sponsor: National Science Foundation
Award Number: 0932392
CPS: Small: Cyber-physical system challenges in man-machine interfaces: context-dependent control of smart artificial hands through enhanced touch perception and mechatronic reflexes
Lead PI:
Veronica Santos
Co-Pi:
Abstract
The objective of this research is to integrate user control with automated reflexes in the human-machine interface. The approach, taking inspiration from biology, analyzes control-switching issues in brain-computer interfaces. A nonhuman primate will perform a manual task while movement- and touch-related brain signals are recorded. While a robotic hand replays the movements, electronic signals will be recorded from touch sensors on the robot?s fingers, then mapped to touch-based brain signals, and used to give the subject tactile sensation via direct cortical stimulation. Context-dependent transfers of authority between the subject and reflex-like controls will be developed based on relationships between sensor signals and command signals. Issues of mixed authority and context awareness have general applicability in human-machine systems. This research advances methods for providing tactile feedback from a remote manipulator, dividing control appropriate to human and machine capabilities, and transferring authority in a smooth, context-dependent manner. These principles are essential to any cyber-physical system requiring robustness in the face of uncertainty, control delays, or limited information flow. The resulting transformative methods of human-machine communication and control will have applications for robotics (space, underwater, military, rescue, surgery, assistive, prosthetic), haptics, biomechanics, and neuroscience. Underrepresented undergraduates will be recruited from competitive university programs at Arizona State University and Mexico's Tec de Monterrey University. Outreach projects will engage the public and underrepresented school-aged children through interactive lab tours, instructional modules, and public lectures on robotics, human-machine systems, and social and ethical implications of neuroprostheses.
Veronica Santos
Performance Period: 09/15/2009 - 08/31/2013
Institution: Arizona State University
Sponsor: National Science Foundation
Award Number: 0932389
CPS: Small: Collaborative Research: Localization and System Services for SpatioTemporal Actions in Cyber-Physical Systems
Lead PI:
Rajesh Gupta
Abstract
The objective of this research is to develop models, methods and tools for capturing and processing of events and actions in cyber-physical systems (CPS) in a manner that does not violate the underlying physics or computational logic. The project approach uses a novel notion of cyber-physical objects (CPO) to capture the mobility and localization of computation in cyber-physical systems using recent advances in geolocation and the Internet infrastructure and supports novel methods for spatiotemporal resource discovery. Project innovations include a model for computing spatiotemporal relationships among events of interests in the physical and logical parts of a CPS, and its use in a novel cyberspatial reference model. Using this model the project builds a framework for locating cyber-physical application services and an operating environment for these services. The project plan includes an experimental platform to demonstrate capabilities for building new OS services for CPS applications including collaborative control applications drawn from the intermodal transportation system. The project will enable design and analysis of societal scale applications such as the transportation and electrical power grid that also include a governance structure. It will directly contribute to educating an engineering talent pool by offering curricular training that range from degree programs in embedded systems to seminars and technology transfer opportunities coordinated through the CalIT2 institute at UCSD and the Institute for Sensing Systems (ISS) at OSU. The team will collaborate with the non-profit Milwaukee Institute to explore policies and mechanisms for enterprise governance systems.
Rajesh Gupta
Performance Period: 09/15/2009 - 08/31/2012
Institution: University of California-San Diego
Sponsor: National Science Foundation
Award Number: 0932360
CPS: Medium: Collaborative Research: Infrastructure and Technology Innovations for Medical Device Coordination
Lead PI:
John Hatcliff
Co-Pi:
Abstract
The objective of this research is to develop a framework for the development and deployment of next-generation medical systems consisting of integrated and cooperating medical devices. The approach is to design and implement an open-source medical device coordination framework and a model-based component oriented programming methodology for the device coordination, supported by a formal framework for reasoning about device behaviors and clinical workflows. The intellectual merit of the project lies in the formal foundations of the framework that will enable rapid development, verification, and certification of medical systems and their device components, as well as the clinical scenarios they implement. The model-based approach will supply evidence for the regulatory approval process, while run-time monitoring components embedded into the system will enable "black box" recording capabilities for the forensic analysis of system failures. The open-source distribution of tools supporting the framework will enhance its adoption and technology transfer. A rigorous framework for integrating and coordinating multiple medical devices will enhance the implementation of complicated clinical scenarios and reduce medical errors in the cases that involve such scenarios. Furthermore, it will speed up and simplify the process of regulatory approval for coordination-enabled medical devices, while the formal reasoning framework will improve the confidence in the design process and in the approval decisions. Overall, the framework will help reduce costs and improve the quality of the health care.
John Hatcliff
Performance Period: 09/15/2009 - 08/31/2013
Institution: Kansas State University
Sponsor: National Science Foundation
Award Number: 0932289
Subscribe to