Connected Automated Vehicle (CAV) applications are expected to transform the transportation landscape and address some of the pressing safety and efficiency issues. While advances in communication and computing technologies enable the concept of CAVs, the coupling of application, control and communication components of such systems and interference from human actors, pose significant challenges to designing systems that are safe and reliable beyond prototype environments.
Large-scale systems with societal relevance, such as power generation systems, are increasingly able to leverage new technologies to mitigate their environmental impact, e.g., by harvesting energy from renewable sources. This NSF CPS project aims to investigate methods and computational tools to design a new user-centric paradigm for energy apportionment and distribution and, more broadly, for trustworthy utility services. In this paradigm, distributed networked systems will assist the end users of electricity in scheduling and apportioning their consumption.
This project explores new mathematical techniques that provide a scientific basis to understand the fundamental properties of Cyber-Physical Systems (CPS) controlled by Artificial Intelligence (AI) and guide their design. From simple logical constructs to complex deep neural network models, AI agents are increasingly controlling physical/mechanical systems. Self-driving cars, drones, and smart cities are just examples of AI-controlled CPS.
This Faculty Early Career Development Program (CAREER) award will contribute to the advancement of national prosperity and economic welfare by researching systems that improve access to manufacturing services. Wearable electronics are widely used in health monitoring and wearable computing and there is a compelling need for comfort, biocompatibility, and easy operation. Recent progress in smart fabrics, textiles, and garments and the associated manufacturing technologies provides opportunities for next-generation wearable electronic devices that are fabricated on cloth.