Brain-computer interfaces (BCIs) are cyber-physical systems (CPSs) that record human brain waves and translate them into the control commands for external devices such as computers and robots. They may allow individuals with spinal cord injury (SCI) to assume direct brain control of a lower extremity prosthesis to regain the ability to walk. Since the lower extremity paralysis due to SCI leads to as much as $50 billion of health care cost each year in the US alone, the use of a BCI-controlled lower extremity prosthesis to restore walking can have a significant public health impact. Recent results have demonstrated that a person with paraplegia due to SCI can use a non-invasive BCI to regain basic walking. While encouraging, this BCI is unlikely to become a widely adopted solution since the poor signal quality of non-invasively recorded brain waves may lead to unreliable BCI operation. Moreover, lengthy and tedious mounting procedures of the non-invasive BCI systems are impractical. A permanently implantable BCI CPS can address these issues, but critical challenges must be overcome to achieve this goal, including the elimination of protruding electronics and reliance on an external computer for brain signal processing. The goal of this study is to develop a benchtop version of a fully implantable BCI CPS, capable of acquiring electrocorticogram signals, recorded directly from the surface of the brain, and analyzing them internally to enable direct brain control of a robotic gait exoskeleton (RGE) for walking. The BCI CPS will be designed as a low-power system with revolutionary adaptive power management in order to meet stringent heat and power consumption constraints for future human implantation. Comprehensive measurements and benchtop tests will ensure proper function of BCI CPS. Finally, the system will be integrated with an RGE, and its ability to facilitate brain-controlled walking will be tested in a small group of human subjects. The successful completion of this project will have broad bioengineering and scientific impact. It will revolutionize medical device technology by minimizing power consumption and heat production while enabling complex operations to be performed. The study will also help deepen the understanding of how the human brain controls walking, which has long been a mystery to neuroscientists. Finally, this study?s broader impact is to promote education and lifelong learning in engineering students and the community, broaden the participation of underrepresented groups in engineering, and increase the scientific literacy of persons with disabilities. Research opportunities will be provided to (under-)graduate students. Their findings will be broadly disseminated and integrated into teaching activities. To inspire underrepresented K-12 and community college students to pursue higher education in STEM fields, and to increase the scientific literacy of persons with disabilities, outreach activities will be undertaken in the form of live scientific exhibits and actual BCI demonstrations. Recent results have demonstrated that a person with paraplegia due to SCI can use an electroencephalogram (EEG)-based BCI to regain basic walking. While encouraging, this EEG-based BCI is unlikely to become a widely adopted solution due to EEG?s inherent noise and susceptibility to artifacts, which may lead to unreliable operation. Also, lengthy and tedious EEG (un-)mounting procedures are impractical. A permanently implantable BCI CPS can address these issues, but critical CPS challenges must be overcome to achieve this goal, including the elimination of protruding electronics and reliance on an external computer for neural signal processing. The goal of this study is to implement a benchtop analogue of a fully implantable BCI CPS, capable of acquiring high-density (HD) electrocorticogram (ECoG) signals, and analyzing them internally to facilitate direct brain control of a robotic gait exoskeleton (RGE) for walking. The BCI CPS will be designed as a low-power modular system with revolutionary adaptive power management in order to meet stringent heat dissipation and power consumption constraints for future human implantation. The first module will be used for acquisition of HD-ECoG signals. The second module will internally execute optimized BCI algorithms and wirelessly transmit commands to an RGE for walking. System and circuit-level characterizations will be conducted through comprehensive measurements. Benchtop tests will ensure the proper system function and conformity to biomedical constraints. Finally, the system will be integrated with an RGE, and its ability to facilitate brain-controlled walking will be tested in a group of human subjects.The successful completion of this project will have broad bioengineering and scientific impact. It will revolutionize medical device technology by minimizing power consumption and heat dissipation while enabling complex algorithms to be executed in real time. The study will also help deepen the physiological understanding of how the human brain controls walking. This study will promote education and lifelong learning in engineering students and the community, broaden the participation of underrepresented groups in engineering, and increase the scientific literacy of persons with disabilities. Research opportunities will be provided to under-graduate students. Their findings will be broadly disseminated and integrated into teaching activities. To inspire underrepresented K-12 and community college students to pursue higher education in STEM fields, and to increase the scientific literacy of persons with disabilities, outreach activities will be undertaken in the form of live scientific exhibits and actual BCI demonstrations.
Off
University of California at Irvine
-
National Science Foundation
Payam Heydari Submitted by Payam Heydari on December 22nd, 2015
Subscribe to 1446908