The objective of this research is to understand the complexities associated with integration between humans and cyber-physical systems (CPS) at large scales. For this purpose, the team will develop and demonstrate the application of Smart City Hubs focusing on intelligent transportation services in urban settings. Ultimately, this project will produce innovative tools and techniques to configure and deploy large-scale scale experiments enabling the study of how humans affect the control loops in large CPS such as smart cities. This work covers several design concerns that are specific to human-CPS such as human computer interfaces, decision support systems and incentives engineering to keep humans engaged with the system.
The technology base will include a novel integration platform for allowing (1) integration of spatially and temporally distributed sensor streams; (2) integration of simulation-based decision support systems, (3) development and execution of experiments to understand how advanced decision support tools combined with incentive mechanisms improve the utilization of the transportation infrastructure and user experience. A key aspect of this research will be development of data-driven rider models that can be subsequently used by city engineers for planning purposes. The proposed system will enable a new generation of human-CPS systems where sensing, wireless communication, and data-driven predictive analytics is combined with human decision-making and human-driven actuation (driving and physical infrastructure utilization) to form a control loop.
The Smart City Hub provides a generic platform for a number of other services beyond traffic and public transportation, including maps and way finding, municipal communication, emergency management and others. The tools that will be developed will allow researchers and practitioners to more quickly prototype, deploy and experiment with these CPS. To ensure these benefits, the research team will make its research infrastructure freely available as an open-source project. It will also develop educational materials focused on modeling, prototyping and evaluating these applications at scale. In addition, the studies the team will perform will provide new data and new scientific understanding of large-scale human interaction with CPS, which it expects will yield long-term benefits in the design and analysis of such applications.
Off
Vanderbilt University
-
National Science Foundation
Submitted by Abhishek Dubey on December 22nd, 2015