Monitoring and control of cyber-physical systems.
Parking can take up a significant amount of the trip costs (time and money) in urban travel. As such, it can considerably influence travelers' choices of modes, locations, and time of travel. The advent of smart sensors, wireless communications, social media and big data analytics offers a unique opportunity to tap parking's influence on travel to make the transportation system more efficient, cleaner, and more resilient. A cyber-physical social system for parking is proposed to realize parking's potential in achieving the above goals. This cyber-physical system consists of smart parking sensors, a parking and traffic data repository, parking management systems, and dynamic traffic flow control. If successful, the results of the investigation will create a new paradigm for managing parking to reduce traffic congestion, emissions and fuel consumption and to enhance system resilience. These results will be disseminated broadly through publications, workshops and seminars. The research will provide interdisciplinary training to both graduate and undergraduate students. The results of this research also fills a void in our graduate transportation curriculum in which parking management gets little coverage. The investigators will organize an online short training course in Coursera and National Highway Institute to bring results to a broader audience. The investigators will also collaborate with Carnegie Museum of Natural History to develop an online digital map and related educational programs, which will be presented in the museum galleries during public events. Technically, new theories, algorithms and systems for efficient management of transportation infrastructure through parking will be developed in this research, leveraging cutting-edge sensing technology, communication technology, big data analytics and feedback control. The research probes massive individualized and infrastructure based traffic and parking data to gain a deeper understanding of travel and parking behavior, and develops a novel reservoir-based network flow model that lays the foundation for modeling the complex interactions between parking and traffic flow in large-scale transportation networks. The theory will be investigated at different levels of granularity to reveal how parking information and pricing mechanisms affect network flow in a competitive market of private and public parking. In addition, this research proposes closed-loop control mechanisms to enhance mobility and sustainability of urban networks. Prices, access and information of publicly owned on-street and off-street parking are dynamically controlled to: a) change day-to-day behavior of all commuters through day-to-day travel experience and/or online information systems; b) change travel behavior of a fraction of adaptive travelers on the fly who are aware of time-of-day parking information and comply to the recommendations; and c) influence the market prices of privately owned parking areas through a competitive parking market.
Off
University of California-Davis
-
National Science Foundation
Submitted by Michael Zhang on September 22nd, 2016
Children affected by neurological conditions (e.g., Cerebral Palsy, Muscular Atrophy, Spina Bifida and Severe head trauma) often develop significant disabilities including impaired motor control. In many cases, walking becomes a non-functional and exhausting skill that demands the use of the aids or the substitution of function, such as wheelchair. This usually cause these children not to acquire locomotion skills, and consequently to lose their independence. However, it is well understood that bipedal locomotion, an essential human characteristic, ensures the best physiological motor pattern acquisition. For this reason, in children with neurological and neuromuscular diseases, independent walking is a significant rehabilitation goal that must be pursued in a specific temporal window due to the plasticity of central nervous system. In other words, children with neurological conditions have a small window of time to acquire locomotion skills through assisted walking rehearsals. The objective of this research work is to create and experimentally validate a set of technologies that form the framework for the development of adaptive, self-balancing, and modular exoskeleton robotics systems for children with neurological disorders. It is our belief that the exoskeleton (and its associated infrastructure) resulting from this research will offer an effective tool to promote locomotion skill acquisition, and in general health, during a critical period in the early life of children with neurological conditions. This research proposal develops a data-driven human-machine modeling specific to physiological conditions. This creates regression models that predict the user behavior without explicit modeling the complex human musculoskeletal dynamics and motor control mechanism. Additionally this research project formulates a safe adaptive control problem as a model predictive control (MPC) problem. In this method, an optimal input sequence is computed by solving a constrained finite-time optimal control problem where exoskeleton intrusion (input from exoskeleton) is minimized to maximize the user's intent to promote learning. This project further develops a novel approach for stabilizing and preventing fall of the exoskeleton and the child as a whole. This method allows a child wearing an exoskeleton to learn locomotion skills described above with less likelihood of falls. This research project furthermore evaluates the developed technologies in terms of efficiency and efficacy and creates a novel fun game using exoskeleton for children to promote locomotion skills.
Off
University of California-Berkeley
-
National Science Foundation
Submitted by Homayoon Kazerooni on September 22nd, 2016
Event
IFAC 2017
The 20th World Congress of the International Federation of Automatic Control The IFAC World Congress is the forum of excellence for the exploration of the frontiers in control science and technology, attended by a worldwide audience of scientists and engineers from academy and industry. It offers the most up to date and complete view of control techniques, with the widest coverage of application fields. The 20th IFAC World Congress will feature the 60th anniversary of IFAC.
Submitted by Anonymous on September 19th, 2016

PUBLIC RELEASE: 22-JUN-2016

Workshop explores how artificial intelligence can be engineered for safety and control

Carnegie Mellon and White House Office of Science and Technology Policy will co-host

Submitted by Anonymous on June 28th, 2016
Event
CyPhy 2016
Call for Papers Workshop on Design, Modeling and Evaluation of Cyber Physical Systems (CyPhy 2016) Held in conjunction with ESWEEK 2016 October 6 2016 | Pittsburgh, PA, USA | http://www.cyphy.org/
Submitted by Anonymous on June 10th, 2016

The U.S. Department of Energy’s Advanced Research Projects Agency-Energy (ARPA-E) announced up to $30 million in funding for two new programs that aim to solve some of the nation’s most pressing energy challenges by accelerating the development of novel energy technologies. NEXT-Generation Energy Technologies for Connected and Automated on-Road vehicles (NEXTCAR) seeks to develop new technologies that decrease energy consumption of future vehicles through the use of connectivity and automation.

“We must continue to invest in programs that encourage the scientific community to think boldly and differently about our nation’s energy future,” said ARPA-E Director Dr. Ellen D. Williams. “The NEXTCAR program’s focus on exploiting automation to improve energy efficiency in future vehicles."

Significant research and development is underway to make future vehicles more connected and automated in order to reduce road accidents and traffic fatalities, but these technologies can also be leveraged to improve energy efficiency in future vehicles. The NEXTCAR program is providing up to $30 million in funding to create new control technologies that reduce the energy consumption of future vehicles by using connectivity and vehicle automation. The program seeks transformative technological solutions that will enable at least a 20 percent reduction in the energy consumption of future Connected and Automated Vehicles (CAVs), compared to vehicles without these technologies. 

For more information and to view the full funding opportunity announcement, please click here

General Announcement
Not in Slideshow
Submitted by Michael Kane on May 11th, 2016
Event
RTNS 2016
 24th International Conference on Real-Time Networks and Systems (RTNS) CONFERENCE RTNS is a friendly conference with a great sense of community that presents excellent opportunities for collaboration. Original unpublished papers on all aspects of real-time systems and networks are welcome. The proceedings are published by the ACM ICPS (approval pending). RTNS covers a wide-spectrum of topics in real-time and embedded systems, including, but not limited to:
Submitted by Anonymous on May 9th, 2016
Event
CCSNA 2016
The Fifth IEEE International Workshop on Cloud Computing Systems, Networks, and Applications (CCSNA) organized in conjunction with IEEE Global Communications Conference (GLOBECOM 2016)
Submitted by Anonymous on May 9th, 2016
Legged robots have captured the imagination of society at large, through entertainment and through the dissemination of research findings. Yet, today's reality of what (bipedal) legged robots can do falls short of society's vision. A big part of the reason is that legged robots are viewed as surrogates for humans, able to go wherever humans can as aids or as assistants where it might also be too dangerous or risky. It is in the expectation of robustness and walking facility that today's research hits its limits, especially when the terrain has granular properties. Impeding progress is the lack of a holistic approach to the cyber-physical modeling and control of legged robots. The vision of this work is to unite experts in granular mechanics, optimal control, and learning theory in order to define a methodology for advancing cyber-physical systems (CPS) involving a tight coupling of the physical with the cyber through dynamic interactions that must be learned online. The proposed work will advance the science of cyber-physical systems by more explicitly tying sensing, perception, and computing to the optimization and control of physical systems whose properties are variable and uncertain. Achieving reliable, adaptive legged locomotion over terrain with arbitrary granular properties would transform several application domain areas of robotics; e.g., disaster response, agricultural and industrial robotics, and planetary robotics. More broadly, the same tools would apply to related CPS with regards to terrain aware exoskeleton and rehabilitation prosthetics for persons with missing, non-functional, or injured legs, as well as to energy networks with time-varying, nonlinear dynamics models. The CPS platform to be studied is that of a bipedal robot locomoting over granular ground material with uncertain physical properties (sand, gravel, dirt, etc.). The proposed work seeks to overcome current impediments to reliable legged locomotion over uncertain terrain type, which fundamentally relies on the controlled interaction of the robot's feet with the physical environment. The research goal is to improve the perception and control of legged locomotion over granular media for the express purpose of achieving robust, adaptive, terrain-aware locomotion. It revolves around the hypothesis that simple models with decent predictive performance and low computational overhead are sufficient for the optimal control formulations as the compute-constrained adaptive subsystem will both learn and classify the peculiarities of the terrain online. The main research objectives will involve: [1] a validated co-simulation platform for legged robot movement over granular media; [2] terrain-dependent, stable gait generation and gait transition strategies via optimal control; [3] online, compute-constrained learning of granular interactions for adaptation and terrain classification; and [4] validated contributions using experimental testbeds involving variable and unknown (to the robot) granular media. Given the high value of the robotic platforms and the research with regards to outreach and participation, they will be used as outreach tools and to create new educational modules for promotion of STEM fields. Further, the multi-disciplinary nature of the work will be highlighted in order to emphasize its importance.
Off
Georgia Institute of Technology
-
National Science Foundation
Daniel Goldman
Erik Verriest
Submitted by Patricio Vela on April 25th, 2016
The automotive industry finds itself at a cross-roads. Current advances in MEMS sensor technology, the emergence of embedded control software, the rapid progress in computer technology, digital image processing, machine learning and control algorithms, along with an ever increasing investment in vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) technologies, are about to revolutionize the way we use vehicles and commute in everyday life. Automotive active safety systems, in particular, have been used with enormous success in the past 50 years and have helped keep traffic accidents in check. Still, more than 30,000 deaths and 2,000,000 injuries occur each year in the US alone, and many more worldwide. The impact of traffic accidents on the economy is estimated to be as high as $300B/yr in the US alone. Further improvement in terms of driving safety (and comfort) necessitates that the next generation of active safety systems are more proactive (as opposed to reactive) and can comprehend and interpret driver intent. Future active safety systems will have to account for the diversity of drivers' skills, the behavior of drivers in traffic, and the overall traffic conditions. This research aims at improving the current capabilities of automotive active safety control systems (ASCS) by taking into account the interactions between the driver, the vehicle, the ASCS and the environment. Beyond solving a fundamental problem in automotive industry, this research will have ramifications in other cyber-physical domains, where humans manually control vehicles or equipment including: flying, operation of heavy machinery, mining, tele-robotics, and robotic medicine. Making autonomous/automated systems that feel and behave "naturally" to human operators is not always easy. As these systems and machines participate more in everyday interactions with humans, the need to make them operate in a predictable manner is more urgent than ever. To achieve the goals of the proposed research, this project will use the estimation of the driver's cognitive state to adapt the ASCS accordingly, in order to achieve a seamless operation with the driver. Specifically, new methodologies will be developed to infer long-term and short-term behavior of drivers via the use of Bayesian networks and neuromorphic algorithms to estimate the driver's skills and current state of attention from eye movement data, together with dynamic motion cues obtained from steering and pedal inputs. This information will be injected into the ASCS operation in order to enhance its performance by taking advantage of recent results from the theory of adaptive and real-time, model-predictive optimal control. The correct level of autonomy and workload distribution between the driver and ASCS will ensure that no conflicts arise between the driver and the control system, and the safety and passenger comfort are not compromised. A comprehensive plan will be used to test and validate the developed theory by collecting measurements from several human subjects while operating a virtual reality-driving simulator.
Off
Georgia Institute of Technology
-
National Science Foundation
Karen Feigh
Submitted by Panagiotis Tsiotras on April 25th, 2016
Subscribe to Control