The imitation of the operation of a real-world process or system over time.
This project represents a cross-disciplinary collaborative research effort on developing rigorous, closed-loop approaches for designing, simulating, and verifying medical devices. The work will open fundamental new approaches for radically accelerating the pace of medical device innovation, especially in the sphere of cardiac-device design. Specific attention will be devoted to developing advanced formal methods-based approaches for analyzing controller designs for safety and effectiveness; and devising methods for expediting regulatory and other third-party reviews of device designs. The project team includes members with research backgrounds in computer science, electrical engineering, biophysics, and cardiology; the PIs will use a coordinated approach that balances theoretical, experimental and practical concerns to yield results that are intended to transform the practice of device design while also facilitating the translation of new cardiac therapies into practice.
The proposed effort will lead to significant advances in the state of the art for system verification and cardiac therapies based on the use of formal methods and closed-loop control and verification. The animating vision for the work is to enable the development of a true in silico design methodology for medical devices that can be used to speed the development of new devices and to provide greater assurance that their behaviors match designers' intentions, and to pass regulatory muster more quickly so that they can be used on patients needing their care. The scientific work being proposed will serve this vision by providing mathematically robust techniques for analyzing and verifying the behavior of medical devices, for modeling and simulating heart dynamics, and for conducting closed-loop verification of proposed therapeutic approaches.
The acceleration in medical device innovation achievable as a result of the proposed research will also have long-term and sustained societal benefits, as better diagnostic and therapeutic technologies enter into the practice of medicine more quickly. It will also yield a collection of tools and techniques that will be applicable in the design of other types of devices. Finally, it will contribute to the development of human resources and the further inclusion of under-represented groups via its extensive education and outreach programs, including intensive workshop experiences for undergraduates.
Off
Georgia Tech Research Corporation
-
National Science Foundation
This project represents a cross-disciplinary collaborative research effort on developing rigorous, closed-loop approaches for designing, simulating, and verifying medical devices. The work will open fundamental new approaches for radically accelerating the pace of medical device innovation, especially in the sphere of cardiac-device design. Specific attention will be devoted to developing advanced formal methods-based approaches for analyzing controller designs for safety and effectiveness; and devising methods for expediting regulatory and other third-party reviews of device designs. The project team includes members with research backgrounds in computer science, electrical engineering, biophysics, and cardiology; the PIs will use a coordinated approach that balances theoretical, experimental and practical concerns to yield results that are intended to transform the practice of device design while also facilitating the translation of new cardiac therapies into practice.
The proposed effort will lead to significant advances in the state of the art for system verification and cardiac therapies based on the use of formal methods and closed-loop control and verification. The animating vision for the work is to enable the development of a true in silico design methodology for medical devices that can be used to speed the development of new devices and to provide greater assurance that their behaviors match designers' intentions, and to pass regulatory muster more quickly so that they can be used on patients needing their care. The scientific work being proposed will serve this vision by providing mathematically robust techniques for analyzing and verifying the behavior of medical devices, for modeling and simulating heart dynamics, and for conducting closed-loop verification of proposed therapeutic approaches.
The acceleration in medical device innovation achievable as a result of the proposed research will also have long-term and sustained societal benefits, as better diagnostic and therapeutic technologies enter into the practice of medicine more quickly. It will also yield a collection of tools and techniques that will be applicable in the design of other types of devices. Finally, it will contribute to the development of human resources and the further inclusion of under-represented groups via its extensive education and outreach programs, including intensive workshop experiences for undergraduates.
Off
University of Pennsylvania
-
National Science Foundation
Sanjay Dixit
Submitted by Rahul Mangharam on December 22nd, 2015
Title: CPS: Breakthrough: A Mathematical Theory of Cyber-Physical Systems
The fundamental challenge in cyber-physical systems is the confluence of distinct scientific and engineering models, methods, and tools for cyber and physical systems. Cyber systems are primarily about processing information. Physical systems are primarily about structure and dynamics, the evolution of state in time. This project develops a mathematical theory of cyber-physical systems that provides a formal interface between the cyber and the physical. The intellectual merits of the project are a solid basis for the modeling and design as well as the implementation and verification of cyber-physical systems, and a fruitful connection of the nascent discipline of cyber-physical-systems engineering with standard mathematical practice. The project's broader significance and importance are providing a sound foundation by which cyber-physical system technologies can be assessed, and enabling the discipline of cyber-physical-system engineering to evolve into a mature and durable field of study.
The project builds on the theory of generalized ultrametric semilattices and the fixed-point theory of strictly contracting functions on generalized ultrametric semilattices to develop a cyber-physical domain theory, providing a firm mathematical footing for arbitrary composition and higher-order behavior, formulating the right notion of convergence and continuity for cyber-physical computation, and developing a notion of approximation and effectiveness that allows for a two-way connection between the abstractions of the theory and the realizations of practice. It further applies the theory to a wide range of classic problems of modeling and simulating mixed discrete and continuous phenomena, and extends it to embrace the discrete interventions of a cyber subsystem on its physical counterpart in a cyber-physical system. It also investigates the practical implications of the theory for the implementation and verification of cyber-physical systems by reexamining currently used timed models of computation through the prism of the theory, exploring the extension of programming languages with temporal constructs that are complete over the theoretical abstractions, and integrating the theory in automated and interactive theorem provers to supplement existing model-checking methods that might succumb to the scale of cyber-physical systems.
Off
University of California at Berkeley
-
National Science Foundation
Submitted by Edward Lee on December 22nd, 2015
This project represents a cross-disciplinary collaborative research effort on developing rigorous, closed-loop approaches for designing, simulating, and verifying medical devices. The work will open fundamental new approaches for radically accelerating the pace of medical device innovation, especially in the sphere of cardiac-device design. Specific attention will be devoted to developing advanced formal methods-based approaches for analyzing controller designs for safety and effectiveness; and devising methods for expediting regulatory and other third-party reviews of device designs. The project team includes members with research backgrounds in computer science, electrical engineering, biophysics, and cardiology; the PIs will use a coordinated approach that balances theoretical, experimental and practical concerns to yield results that are intended to transform the practice of device design while also facilitating the translation of new cardiac therapies into practice.
The proposed effort will lead to significant advances in the state of the art for system verification and cardiac therapies based on the use of formal methods and closed-loop control and verification. The animating vision for the work is to enable the development of a true in silico design methodology for medical devices that can be used to speed the development of new devices and to provide greater assurance that their behaviors match designers' intentions, and to pass regulatory muster more quickly so that they can be used on patients needing their care. The scientific work being proposed will serve this vision by providing mathematically robust techniques for analyzing and verifying the behavior of medical devices, for modeling and simulating heart dynamics, and for conducting closed-loop verification of proposed therapeutic approaches.
The acceleration in medical device innovation achievable as a result of the proposed research will also have long-term and sustained societal benefits, as better diagnostic and therapeutic technologies enter into the practice of medicine more quickly. It will also yield a collection of tools and techniques that will be applicable in the design of other types of devices. Finally, it will contribute to the development of human resources and the further inclusion of under-represented groups via its extensive education and outreach programs, including intensive workshop experiences for undergraduates.
Off
Fraunhofer Center for Experimental Software Engineering
-
National Science Foundation
Dharmalingam Ganesan
This project represents a cross-disciplinary collaborative research effort on developing rigorous, closed-loop approaches for designing, simulating, and verifying medical devices. The work will open fundamental new approaches for radically accelerating the pace of medical device innovation, especially in the sphere of cardiac-device design. Specific attention will be devoted to developing advanced formal methods-based approaches for analyzing controller designs for safety and effectiveness; and devising methods for expediting regulatory and other third-party reviews of device designs. The project team includes members with research backgrounds in computer science, electrical engineering, biophysics, and cardiology; the PIs will use a coordinated approach that balances theoretical, experimental and practical concerns to yield results that are intended to transform the practice of device design while also facilitating the translation of new cardiac therapies into practice.
The proposed effort will lead to significant advances in the state of the art for system verification and cardiac therapies based on the use of formal methods and closed-loop control and verification. The animating vision for the work is to enable the development of a true in silico design methodology for medical devices that can be used to speed the development of new devices and to provide greater assurance that their behaviors match designers' intentions, and to pass regulatory muster more quickly so that they can be used on patients needing their care. The scientific work being proposed will serve this vision by providing mathematically robust techniques for analyzing and verifying the behavior of medical devices, for modeling and simulating heart dynamics, and for conducting closed-loop verification of proposed therapeutic approaches.
The acceleration in medical device innovation achievable as a result of the proposed research will also have long-term and sustained societal benefits, as better diagnostic and therapeutic technologies enter into the practice of medicine more quickly. It will also yield a collection of tools and techniques that will be applicable in the design of other types of devices. Finally, it will contribute to the development of human resources and the further inclusion of under-represented groups via its extensive education and outreach programs, including intensive workshop experiences for undergraduates
Off
University of Maryland College Park
-
National Science Foundation
Submitted by Rance Cleaveland on December 21st, 2015
This project represents a cross-disciplinary collaborative research effort on developing rigorous, closed-loop approaches for designing, simulating, and verifying medical devices. The work will open fundamental new approaches for radically accelerating the pace of medical device innovation, especially in the sphere of cardiac-device design. Specific attention will be devoted to developing advanced formal methods-based approaches for analyzing controller designs for safety and effectiveness; and devising methods for expediting regulatory and other third-party reviews of device designs. The project team includes members with research backgrounds in computer science, electrical engineering, biophysics, and cardiology; the PIs will use a coordinated approach that balances theoretical, experimental and practical concerns to yield results that are intended to transform the practice of device design while also facilitating the translation of new cardiac therapies into practice.
The proposed effort will lead to significant advances in the state of the art for system verification and cardiac therapies based on the use of formal methods and closed-loop control and verification. The animating vision for the work is to enable the development of a true in silico design methodology for medical devices that can be used to speed the development of new devices and to provide greater assurance that their behaviors match designers' intentions, and to pass regulatory muster more quickly so that they can be used on patients needing their care. The scientific work being proposed will serve this vision by providing mathematically robust techniques for analyzing and verifying the behavior of medical devices, for modeling and simulating heart dynamics, and for conducting closed-loop verification of proposed therapeutic approaches.
The acceleration in medical device innovation achievable as a result of the proposed research will also have long-term and sustained societal benefits, as better diagnostic and therapeutic technologies enter into the practice of medicine more quickly. It will also yield a collection of tools and techniques that will be applicable in the design of other types of devices. Finally, it will contribute to the development of human resources and the further inclusion of under-represented groups via its extensive education and outreach programs, including intensive workshop experiences for undergraduates.
Off
Rochester Institute of Tech
-
National Science Foundation
This project will design next-generation defense mechanisms to protect critical infrastructures, such as power grids, large industrial plants, and water distribution systems. These critical infrastructures are complex primarily due to the integration of cyber and physical components, the presence of high-order behaviors and functions, and an intricate and large interconnection pattern. Malicious attackers can exploit the complexity of the infrastructure, and compromise a system's functionality through cyber attacks (that is hacking into the computation and communication systems) and/or physical attacks (tampering with the actuators, sensors and the control system). This work will develop mathematical models of critical infrastructures and attacks, develop intelligent control-theoretic security mechanisms, and validate the findings on an industry-accredited simulation platform. This project will directly impact national security and economic competitiveness, and the results will be available and useful to utility companies. To accompany the scientific advances, the investigators will also engage in educational efforts to bring this research to the classroom at UCR, and will disseminate their results via scientific publications. The work will also create several opportunities for undergraduate and graduate students to engage in research at UCR, one of the nation's most ethnically diverse research-intensive institutions.
This study encompasses theoretical, computational, and experimental research at UCR aimed at characterizing vulnerabilities of complex cyber-physical systems, with a focus on electric power networks, and control-theoretic defense mechanisms to ensure protection and graceful performance degradation against accidental faults and malicious attacks. This project proposes a transformative approach to cyber-physical security, which builds on a unified control-theoretic framework to model cyber-physical systems, attacks, and defense strategies. This project will undertake three main research initiatives ranging from fundamental scientific and engineering research to analysis using industry-accepted simulation tools: (1) modeling and analysis of cyber-physical attacks, and their impact on system stability and performance; (2) design of monitors to reveal and distinguish between accidental and malignant contingencies; and (3) synthesis of adaptive defense strategies for stochastic and highly dynamic cyber-physical systems. Results will first be characterized from a pure control-theoretic perspective with focus on stochastic, switching, and dynamic cyber-physical systems, so as to highlight fundamental research challenges, and then specialized for the case of smart grid, so as to clarify the implementation of monitors, attacks, and defense strategies. The findings and strategies will be validated for the case of power networks by using the RTDS simulation system, which is an industry-accredited tool for real-time tests of dynamic behavior, faults, attacks, monitoring systems, and defensive strategies.
Off
University of California at Riverside
-
National Science Foundation
Submitted by Fabio Pasqualetti on December 21st, 2015
This INSPIRE award is partially funded by the Cyber-Physical Systems Program in the Division of Computer and Network Systems in the Directorate for Computer and Information Science and Engineering, the Information and Intelligent Systems Program in the Division of Information and Intelligent Systems in the Directorate for Computer and Information Science and Engineering, the Computer Systems Research Program in the Division of Computer and Network Systems in the Directorate for Computer and Information Science and Engineering, and the Software and Hardware Foundations Program in the Division of Computing and Communications Foundations in the Directorate for Computer and Information Science and Engineering.
Sound plays a vital role in the ocean ecosystem as many organisms rely on acoustics for navigation, communication, detecting predators, and finding food. Therefore, the 3D underwater soundscape, i.e., the combination of sounds present in the immersive underwater environment, is of extreme importance to understand and protect underwater ecosystems. This project is creating a transformative distributed ocean observing system for studying the underwater soundscape at revolutionary spatial (~100 meters) and temporal (~100 seconds) resolutions that is also able to simultaneously resolve small-scale ocean current flow. These breakthroughs are achieved using a distributed collective of small hydrophone-equipped subsurface floats, which utilize group management techniques and sensor fusion to understand the ocean soundscape in a Lagrangian manner. The ability to record soundscapes provides a novel sensing technology to understand the effects of sound on marine ecosystems and the role that sound plays for species development. Experiments off the coast of San Diego, CA, and a research campaign in the Cayman Islands provide concrete scientific studies that are tightly interwoven with the engineering research.
Oceans are drivers of global climate, are home to some of the most important and diverse ecosystems, and represent a substantial contribution to the world's economy as a major source of food and employment. The technological and scientific advances in this project provide crucial tools to understand natural ocean resources, by studying soundscapes at spatio-temporal scales that were heretofore extremely burdensome and expensive to obtain.
Off
University of California at San Diego
-
National Science Foundation
Submitted by Curt Schurgers on December 21st, 2015
This grant provides funding for establishing the scientific foundations of a product innovation process that can engage a vastly larger pool of talent to generate new ideas and to create new cyber-physical products. The primary objective is to address fundamental issues pertaining to natural interfaces, behavioral modeling and secure knowledge sharing, with particular emphasis on their integration. This objective will be achieved by pursuing the following three aims: (1) reducing barriers to participation in product innovation through natural interfaces between physical and virtual domains, (2) reducing barriers to model-based engineering in community-based product development, (3) overcoming information-related impediments to collaboration and information sharing. The findings will be embodied in a proof-of-concept cyber-physical platform for creative design and prototyping.
The results of this research hold promise for a new conceptualization of a cyber-physical infrastructure, building on the developments in natural interfaces and information security. The specific outcomes include: (a) well-founded methods for 3D design support of cyber-physical products, and their software embodiment in a natural user interface, (b) techniques and middleware to support model-based engineering in virtual community-based product development, and (c) techniques and protocols for minimum disclosure interactions, quality of inputs assurance, provenance and integrity, and usage control for virtual design and making of cyber-physical products. The proposed research will advance the state of the art in shape creation, product design and manufacturing, and secure design coordination. Validation of the concepts in an educational context will benefit the engineering curriculum by exposing students to emerging ways of designing and making cyber-physical products. Over the long term, the research, education, and dissemination efforts conducted in this project will facilitate a paradigm shift where cyber-physical design and manufacturing using natural interfaces, secure behavioral modeling and knowledge sharing in communities will become a part of our nation?s creative design and manufacturing capacity.
Off
Purdue University
-
National Science Foundation
Submitted by Jitesh Panchal on December 21st, 2015
Project
CPS: Synergy: Collaborative Research: Mutually Stabilized Correction in Physical Demonstration
Objective: How much a person should be allowed to interact with a controlled machine? If that machine is safety critical, and if the computer that oversees its operation is essential to its operation and safety, the answer may be that the person should not be allowed to interfere with its operation at all or very little. Moreover, whether the person is a novice or an expert matters.
Intellectual Merit: This research algorithmically resolves the tension between the need for safety and the need for performance, something a person may be much more adept at improving than a machine. Using a combination of techniques from numerical methods, systems theory, machine learning, human-machine interfaces, optimal control, and formal verification, this research will develop a computable notion of trust that allows the embedded system to assess the safety of the instruction a person is providing. The interface for interacting with a machine matters as well; designing motions for safety-critical systems using a keyboard may be unintuitive and lead to unsafe commands because of its limitations, while other interfaces may be more intuitive but threaten the stability of a system because the person does not understand the needs of the system. Hence, the person needs to develop trust with the machine over a period of time, and the last part of the research will include evaluating a person's performance by verifying the safety of the instructions the person provides. As the person becomes better at safe operation, she will be given more authority to control the machine while never putting the system in danger.
Broader Impacts: The activities will include outreach, development of public-domain software, experimental coursework including two massive online courses, and technology transfer to rehabilitation. Outreach will include exhibits at the Museum of Science and Industry and working with an inner-city high school. The algorithms to be developed will have immediate impact on projects with the Rehabilitation Institute of Chicago, including assistive devices, stroke assessment, and neuromuscular hand control. Providing a foundation for a science of trust has the potential to transform rehabilitation research.
Off
Northwestern University
-
National Science Foundation