Theoretical aspects of cyber-physical systems.
Robotic devices are excellent candidates for delivering repetitive and intensive practice that can restore functional use of the upper limbs, even years after a stroke. Rehabilitation of the wrist and hand in particular are critical for recovery of function, since hands are the primary interface with the world. However, robotic devices that focus on hand rehabilitation are limited due to excessive cost, complexity, or limited functionality. A design and control strategy for such devices that bridges this gap is critical. The goals of the research effort are to analyze the properties and role of passive dynamics, defined by joint stiffness and damping, in the human hand and wrist during grasping and manipulation, and then mimic such properties in a wrist-hand exoskeleton for stroke rehabilitation. The project will culminate with device testing in collaboration with rehabilitation clinicians. A significant problem in robotic rehabilitation is how to provide assisted movement to the multiple degrees of freedom of the hand in order to restore motor coordination and function, with a system that is practical for deployment in a clinical environment. Armed with a clearer understanding of the mechanisms underlying passive dynamics and control of systems exhibiting such behavior, this project will inform the design of more effective wrist/hand rehabilitation devices that are feasible for clinical use. In addition, the proposed project will create a unique interdisciplinary environment enabling education, training, and co-advising of graduate students, undergraduate research, and significant and targeted outreach activities to underrepresented groups in science and engineering.
Off
University of Texas at Austin
-
National Science Foundation
Deshpande, Ashish
Ashish Deshpande Submitted by Ashish Deshpande on December 6th, 2011
The national transmission networks that deliver high voltage electric power underpin our society and are central to the ongoing transformation of the American energy infrastructure. Transmission networks are very large and complicated engineering systems, and "keeping the lights on" as the transformation of the American energy infrastructure proceeds is a fundamental engineering challenge involving both the physical aspects of the equipment and the cyber aspects of the controls, communications, and computers that run the system. The project develops new principles of cyber-physical engineering by focusing on instabilities of electric power networks that can cause blackouts. It proposes novel approaches to analyze these instabilities and to design cyber-physical control methods to monitor, detect, and mitigate them. The controls must perform robustly in the presence of variability and uncertainty in electric generation, loads, communications, and equipment status, and during abnormal states caused by natural faults or malicious attacks. The research produces cyber-physical engineering methodologies that specifically help to mitigate power system blackouts and more generally show the way forward in designing robust cyber-physical systems in environments characterized by rich dynamics and uncertainty. Education and outreach efforts involve students at high school, undergraduate, and graduate levels, as well as dissemination of results to the public and the engineering and applied science communities in industry, government and universities.
Off
Carnegie-Mellon University
-
National Science Foundation
Sinopoli, Bruno
Bruno Sinopoli Submitted by Bruno Sinopoli on December 6th, 2011
This project aims to develop a computational framework and a physical platform for enabling dense networks of micro-robotic swarms for medical applications. The approach relies on a new stochastic framework for design and analysis of dense networks, as well as new fabrication and characterization methods for building and understanding bacteria propelled micro-robotic swarms. This project enhances the CPS science beyond passive networks of millimeter-scale bio-implantable devices with active networks of micro-robotic swarms that could be more effective in combating various critical diseases with minimal impact on the human body. Three major research objectives are proposed in this project: 1) Statistical physics inspired approach to the modeling and analysis of dense networks of swarms: The theory envisioned for characterizing the dynamics of dense networks of swarms aims at achieving ?beyond Turing? computation via dense networks, designing autonomous reliable communication protocols for dense networks, and estimating and controlling their performance; 2) Fabrication and steering of swarms of bacteria propelled swimming micro-robots: Large numbers of both chemotactic and magnetotactic bacteria integrated micro-robotic bodies will be fabricated using self-assembly and micro/nano-fabrication methods. Chemotaxis and magnetotaxis will be respectively used as passive and active steering mechanisms for navigating the swarms of micro-robots in small spaces to perform specified tasks; 3) Characterization of the behavior and control of bacteria propelled micro-robotic swarms: To validate and fine tune the proposed computational models, the motion and behavior of single and large numbers of bacteria propelled micro-robots will be characterized using optical and other microscopy methods. Intellectual Merit: The research breakthrough proposed herein consists of building a new physical platform for micro-robotic swarms by using attached bacteria as on-board actuators and chemotaxis and magnetotaxis as passive and active steering control methods, and developing a new computational dense network framework for designing and analyzing such stochastic micro-robotic swarms. The statistical computational framework to be developed in this study will improve understanding of swarming behavior and control of large numbers of bacteria propelled micro-robots. This framework offers an integrated approach towards CPS design that is meant to operate under uncertainty conditions, yet be able to succeed in performing a specified task through self-organization and collective behavior. This bottom-top approach is meant to improve the theoretical foundations of the current computational models of CPS. Broader Impacts: The resulting computational framework and the physical platform could be adapted to a wide range of different stochastic dense network systems ranging from migration of cancer cell populations or dynamics of virus populations to immune system support and modeling. The proposed swarms of bacteria integrated micro-robots have potential future applications in health-care for the diagnosis of diseases and targeted drug delivery inside the stagnant or low velocity fluids of the human body or the medical diagnosis inside lab-on-a-chip microfluidic devices. Such health-care applications could improve the welfare of our society. To foster learning and training of next generation CPS workforce, the PIs plan to emphasize a cross-disciplinary approach to teaching topics that are usually offered in disjoint tracks. The PIs will integrate the CPS research activities in this study into their newly developed courses, and they will also teach one of these courses jointly. As a joint international educational activity, a three-day Summer School will be held alternately in US and Europe every year on various CPS topics related to our project. This will help building a strong international CPS community and training US and European students in CPS topics. The PIs will present the research results of this project to children, K-12 students, K-12 teachers, IEEE and ACM student members, and college students inside and outside of USA through public lectures. This project and the Sloan Foundation will support underrepresented and minority graduate students in the project. Moreover, underrepresented minority undergraduate students will be trained through the CMU ICES summer outreach program called The SURE Thing and the NSF REU program.
Off
Carnegie-Mellon University
-
National Science Foundation
Sitti, Metin
Metin Sitti Submitted by Metin Sitti on December 6th, 2011
This project addresses the impact of the integration of renewable intermittent generation in a power grid. This includes the consideration of sophisticated sensing, communication, and actuation capabilities on the system's reliability, price volatility, and economic and environmental efficiency. Without careful crafting of its architecture, the future smart grid may suffer from a decrease in reliability. Volatility of prices may increase, and the source of high prices may be more difficult to identify because of undetectable strategic policies. This project addresses these challenges by relying on the following components: (a) the development of tractable cross-layer models; physical, cyber, and economic, that capture the fundamental tradeoffs between reliability, price volatility, and economic and environmental efficiency, (b) the development of computational tools for quantifying the value of information on decision making at various levels, (c) the development of tools for performing distributed robust control design at the distribution level in the presence of information constraints, (d) the development of dynamic economic models that can address the real-time impact of consumer's feedback on future electricity markets, and finally (e) the development of cross-layer design principles and metrics that address critical architectural issues of the future grid. This project promotes modernization of the grid by reducing the system-level barriers for integration of new technologies, including the integration of new renewable energy resources. Understanding fundamental limits of performance is indispensable to policymakers that are currently engaged in revamping the infrastructure of our energy system. It is critical that we ensure that the transition to a smarter electricity infrastructure does not jeopardize the reliability of our electricity supply twenty years down the road. The educational efforts and outreach activities will provide multidisciplinary training for students in engineering, economics, and mathematics, and will raise awareness about the exciting research challenges required to create a sustainable energy future.
Off
Massachusetts Institute of Technology
-
National Science Foundation
Dahleh, Munther
Munther Dahleh Submitted by Munther Dahleh on December 6th, 2011
This project integrates digital microfluidics with thin-film photodetectors and control software to realize DNA target sensing using fluorescence. This cyberphysical vision is being realized through tight coupling between physical components, the microfluidic platform and miniaturized sensors, and cyber components, software for control, decision-making, and adaptation. Such a level of integration, decision, and controlled reconfigurability is a significant step forward in clinical diagnostics using digital microfluidic biochips. Topics being investigated include: (i) silicon-based digital microfluidics and integration of optical sensors; (ii) closed-loop operation and run-time optimization under software control; (iii) decision-tree architectures, adaptive reconfiguration, and error recovery. A complete testbed is being developed for nucleic acid identification on a fabricated chip with detection sites. Cyberphysical system integration will transform biochip use, in the same way as compilers and operating systems revolutionized computing, and design automation revolutionized chip design. Benefits to society include the potential to transform personalized medicine, home diagnostics, and portable diagnostics. Integration of digital microfluidics, optical sensing, and software control has the potential to create systems that can be used by any person, regardless of sample preparation skill. One example is the identification of bacterial DNA associated with bacterial blood infection (sepsis), which results in death if not diagnosed early (this is in the top 10 causes of death in the US). Students are being trained through a Senior Design course to understand the design
Off
Duke University
-
National Science Foundation
Chakrabarty, Krishnendu
Krishnendu Chakabarty Submitted by Krishnendu Chakabarty on December 6th, 2011
This NSF award provides support for a CPS Virtual Organization. The National Science Foundation established the Cyber-Physical Systems (CPS) program with the vision of developing a scientific and engineering foundation for routinely building cyber-enabled engineered systems in which cyber capability is deeply embedded at all scales, yet which remain safe, secure, and dependable -- "systems you can bet your life on." The CPS challenge spans essentially every engineering domain. It requires the integration of knowledge and engineering principles across many computational and engineering research disciplines (computing, networking, control, human interaction, learning theory, as well as mechanical, chemical, biomedical, and other engineering disciplines) to develop a "new CPS system science." Achieving such an ambitious goal is challenging. The objective of the CPS "virtual organization" (CPS-VO) project is to actively build and support the multidisciplinary community needed to underpin this new research discipline and enable international and interagency collaboration on CPS. In support of the CPS-VO, Vanderbilt University will work with the community to develop strategies and mechanisms to: (i) facilitate and foster interaction and exchange among CPS researchers across a broad range of institutions, programs and disciplines, (ii) enable sharing of knowledge generated by CPS research with the broader engineering and scientific communities, sharing and integrating experimental tools, platforms and simulators among researchers and stakeholders, (iii) facilitate and foster collaboration and information exchange between CPS researchers and industry and (iv) facilitate international collaboration on CPS research.
Off
Vanderbilt University
-
National Science Foundation
vanBuskirk, Christopher
Chris vanBuskirk Submitted by Chris vanBuskirk on December 6th, 2011
In many important situations, analytically predicting the behavior of physical systems is not possible. For example, the three dimensional nature of physical systems makes it provably impossible to express closed-form analytical solutions for even the simplest systems. This has made experimentation the primary modality for designing new cyber-physical systems (CPS). Since physical prototyping and experiments are typically costly and hard to conduct, "virtual experiments" in the form of modeling and simulation can dramatically accelerate innovation in CPS. Unfortunately, major technical challenges often impede the effectiveness of modeling and simulation. This project develops foundations and tools for overcoming these challenges. The project focuses on robotics as an important, archetypical class of CPS, and consists of four key tasks: 1) Compiling and analyzing a benchmark suite for modeling and simulating robots, 2) Developing a meta-theory for relating cyber-physical models, as well as tools and a test bed for robot modeling and simulation, 3) Validating the research results of the project using two state-of-the-art robot platforms that incorporate novel control technologies and will require novel programming techniques to fully realize their potential 4) Developing course materials incorporating the project's research results and test bed. With the aim of accelerating innovation in a wide range of domains including stroke rehabilitation and prosthetic limbs, the project is developing new control concepts and modeling and simulation technologies for robotics. In addition to new mathematical foundations, models, and validation methods, the project will also develop software tools and systematic methods for using them. The project trains four doctoral students; develops a new course on modeling and simulation for cyber-physical systems that balances both control and programming concepts; and includes an outreach component to the public and to minority-serving K-12 programs.
Off
William Marsh Rice University
-
National Science Foundation
Robert Cartwright
Marcia O'Malley
Taha, Walid
Walid Taha Submitted by Walid Taha on December 6th, 2011
The CrAVES project seeks to lay down intellectual foundations for credible autocoding of embedded systems, by which graphical control system specifications that satisfy given open-loop and closed-loop properties are automatically transformed into source code guaranteed to satisfy the same properties. The goal is that the correctness of these codes can be easily and independently verified by dedicated proof checking systems. During the autocoding process, the properties of control system specifications are transformed into proven assertions explicitly written in the resulting source code. Thus CrAVES aims at transforming the extensive safety and reliability analyses conducted by control system engineers, such as those based on Lyapunov theory, into rigorous, embedded analyses of the corresponding software implementations. CrAVES comes as a useful complement to current static software analysis methods, which it leverages to develop independent verification systems. Computers and computer programs used to manage documents and spreadsheets. They now also interact with physical artifacts (airplanes, power plants, automobile brakes and robotic surgeons), to create Cyber-Physical Systems. Software means complexity and bugs - bugs which can cause real tragedy, far beyond the frozen screens we associate with system crashes on our current PCs. Software autocoding is becoming the de facto recommended practice for many safety-critical applications. CrAVES aims to evolve this towards higher standards of quality and reduced design times and costs. Rigorous, mathematical arguments supporting safety-critical functionalities are the cornerstone of CrAVES. Collaborative programs involving high-school teachers will encourage the transmission of this message to STEM education in high-schools through university programs designed for that purpose.
Off
Carnegie Mellon University
-
National Science Foundation
Venet, Arnaud
Submitted by Temesghen Kahsai Azene on December 6th, 2011
Harnessing wind energy is one of the pressing challenges of our time. The scale, complexity, and robustness of wind power systems present compelling cyber-physical system design issues. Leveraging the physical infrastructure at Purdue, this project aims to develop comprehensive computational infrastructure for distributed real-time control. In contrast to traditional efforts that focus on programming-in-the-small, this project emphasizes programmability, robustness, longevity, and assurance of integrated wind farms. The design of the proposed computational infrastructure is motivated by, and validated on, complex cyber-physical interactions underlying Wind Power Engineering. There are currently no high-level tools for expressing coordinated behavior of wind farms. Using the proposed cyber-physical system, the project aims to validate the thesis that integrated control techniques can significantly improve performance, reduce downtime, improve predictability of maintenance, and enhance safety in operational environments. The project has significant broader impact. Wind energy in the US is the fastest growing source of clean, renewable domestically produced energy. Improvements in productivity and longevity of this clean energy source, even by a few percentage points will have significant impact on the overall energy landscape and decision-making. Mitigating failures and enhancing safety will go a long way towards shaping popular perceptions of wind farms -- accelerating broader acceptance within local communities. Given the relative infancy of "smart" wind farms, the potential of the project cannot be overstated.
Off
Purdue University
-
National Science Foundation
Vitek, Jan
Jan Vitek Submitted by Jan Vitek on December 6th, 2011
The national transmission networks that deliver high voltage electric power underpin our society and are central to the ongoing transformation of the American energy infrastructure. Transmission networks are very large and complicated engineering systems, and "keeping the lights on" as the transformation of the American energy infrastructure proceeds is a fundamental engineering challenge involving both the physical aspects of the equipment and the cyber aspects of the controls, communications, and computers that run the system. The project develops new principles of cyber-physical engineering by focusing on instabilities of electric power networks that can cause blackouts. It proposes novel approaches to analyze these instabilities and to design cyber-physical control methods to monitor, detect, and mitigate them. The controls must perform robustly in the presence of variability and uncertainty in electric generation, loads, communications, and equipment status, and during abnormal states caused by natural faults or malicious attacks. The research produces cyber-physical engineering methodologies that specifically help to mitigate power system blackouts and more generally show the way forward in designing robust cyber-physical systems in environments characterized by rich dynamics and uncertainty. Education and outreach efforts involve students at high school, undergraduate, and graduate levels, as well as dissemination of results to the public and the engineering and applied science communities in industry, government and universities.
Off
University of California at Santa Barbara
-
National Science Foundation
Bullo, Francesco
Francesco Bullo Submitted by Francesco Bullo on December 6th, 2011
Subscribe to Foundations