Applications of CPS technologies essential for the functioning of a society and economy.

New York City, Tampa, FL and Wyoming Selected for Competitive Pilot Programs

Submitted by Site Manager on September 15th, 2015
Dear Colleague, We would like to cordially invite you to contribute a book chapter to a forthcoming book entitled " Security and Privacy in Cyber-Physical Systems: Foundations and Applications", which will be published by Wiley (https://sites.google.com/site/wileycpsspbook/).
Houbing Song Submitted by Houbing Song on September 11th, 2015
The goal of this research is to develop fundamental theory, efficient algorithms, and realistic experiments for the analysis and design of safety-critical cyber-physical transportation systems with human operators. The research focuses on preventing crashes between automobiles at road intersections, since these account for about 40% of overall vehicle crashes. Specifically, the main objective of this work is to design provably safe driver-assist systems that understand driver?s intentions and provide warnings/overrides to prevent collisions. In order to pursue this goal, hybrid automata models for the driver-vehicles-intersection system, incorporating driver behavior and performance as an integral part, are derived from human-factors experiments. A partial order of these hybrid automata models is constructed, according to confidence levels on the model parameters. The driver-assist design problem is then formulated as a set of partially ordered hybrid differential games with imperfect information, in which games are ordered according to parameter confidence levels. The resulting designs are validated experimentally in a driving simulator and in large-scale computer simulations. This research leverages the potential of embedded control and communication technologies to prevent crashes at traffic intersections, by enabling networks of smart vehicles to cooperate with each other, with the surrounding infrastructure, and with their drivers to make transportation safer, more enjoyable, and more efficient. The work is based on a collaboration among researchers in formal methods, autonomous control, and human factors who are studying realistic and provably correct warning/override algorithms that can be readily transitioned to production vehicles.
Off
Emilio Frazzoli
Massachusetts Institute of Technology
Domitilla Del Vecchio
-
National Science Foundation
Domitilla Del Vecchio
Domitilla Del Vecchio Submitted by Domitilla Del Vecchio on August 27th, 2015
Trustworthy operation of next-generation complex power grid critical infrastructures requires mathematical and practical verification solutions to guarantee the correct infrastructural functionalities. This project develops the foundations of theoretical modeling, synthesis and real-world deployment of a formal and scalable controller code verifier for programmable logic controllers (PLCs) in cyber-physical settings. PLCs are widely used for control automation in industrial control systems. A PLC is typically connected to an engineering workstation where engineers develop the control logic to process the input values from sensors and issue control commands to actuators. The project focuses on protecting infrastructures against malicious control injection attacks on PLCs, such as Stuxnet, that inject malicious code on the device to drive the underlying physical platform to an unsafe state. The broader impact of this proposal is highly significant. It offers potential for real-time security for critical infrastructure systems covering sectors such as energy and manufacturing. The project's intellectual merit is in providing a mathematical and practical verification framework for cyber-physical systems through integration of offline formal methods, online monitoring solutions, and power systems analysis. Offline formal methods do not scale for large-scale platforms due to their exhaustive safety analysis of all possible system states, while online monitoring often reports findings too late for preventative action. This project takes a hybrid approach that dynamically predicts the possible next security incidents and reports to operators before an unsafe state is encountered, allowing time for response. The broader impact of this project is in providing practical mathematical analysis capabilities for general cyber-physical safety-critical infrastructure with potential direct impact on our national security. The research outcomes are integrated into education modules for graduate, undergraduate, and K-12 classrooms.
Off
Rutgers University New Brunswick
Saman Zonouz
-
National Science Foundation
Saman Aliari Zonouz
Saman Zonouz Submitted by Saman Zonouz on August 27th, 2015

The objective of this research is an injection of new modeling techniques into the area of Cyber-Physical Systems (CPSs). The approach is to design new architectures for domain-specific modeling tools in order to permit feedback from analysis, validation, and verification engines to influence how CPSs are designed. This project involves new research into the integration of existing, heterogeneous modeling languages in order to address problems in CPS design, rather than a single language for all CPS. Since many tools for analysis, validation, and verification focus on at most two of the three major components of CPS (communication, computation, and control), new paradigms in modeling are used to integrate tools early in the design process. The algorithms and software developed in this project run validation and verification tools on models, and then close the loop by using the tool outputs to automatically modify the system models. The satisfaction of design requirements in CPSs is critical for tomorrow's societal technologies such as smart buildings, home healthcare, and water management. Among the most compelling design requirements are those of safety, and CPSs for autonomous vehicles exemplify this well. By involving a full-sized autonomous vehicle in this project, the validation and verification of safety requirements is tied to a concrete platform that is broadly understood. By involving students in the design of behaviors of the vehicle, the project exposes scientists and engineers of tomorrow to societal-scale problems, and tools to address them.

Off
Jonathan Sprinkle
Loukas Lazos
-
National Science Foundation
Jonathan Sprinkle (Former PI)
Submitted by Loukas Lazos on August 27th, 2015
CALL FOR WORKSHOP AND TUTORIAL PROPOSALS Cyber-Physical Systems Week (CPS Week) April 11-14, 2016 | Vienna, Austria | http://www.cpsweek.org/2016/
Submitted by Anonymous on August 25th, 2015
Event
CRTS 2015
8th International Workshop on Compositional Theory and Technology for Real-Time Embedded Systems (CRTS 2015) Collocated with RTSS 2015. San Antonio TX. USA
Submitted by Anonymous on August 25th, 2015
Event
ARD2016
FIRST CALL FOR PAPERS ARC2016: 12th International Symposium on Applied Reconfigurable Computing    21-24 March 2016 | Mangaratiba, Rio de Janeiro, Brazil |   http://lcr.icmc.usp.br/arc2016/
Submitted by Anonymous on August 25th, 2015
Event
ARCS 2016
29th GI/ITG International Conference on *Architecture of Computing Systems* (ARCS 2016) The ARCS series of conferences has a long tradition reporting high quality results in computer architecture and operating systems research. The focus of the 2016 conference will be on *Heterogeneity in Architectures and Systems - From Embedded to HPC*. In 2016, ARCS will be organized by the Department of Computer Science at the Friedrich-Alexander University Erlangen-Nürnberg (FAU).
Submitted by Anonymous on August 25th, 2015
Call For Papers CPS Security & Privacy 2016 : Call for Book Chapter Proposals for Security and Privacy in Cyber-Physical Systems: Foundations and Applications (Wiley) Submission Deadline Aug 31, 2015 Notification Due Sep 15, 2015 Final Version Due Nov 30, 2015                     
Submitted by Anonymous on August 2nd, 2015
Subscribe to Critical Infrastructure
Feedback
Feedback
If you experience a bug or would like to see an addition or change on the current page, feel free to leave us a message.
Image CAPTCHA
Enter the characters shown in the image.
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.