Applications of CPS technologies involving the power generation and/or energy conservation.
Event
CyPhy'17
Seventh Workshop on Design, Modeling and Evaluation of Cyber Physical Systems (CyPhy'17) Held in conjunction with ESWEEK 2017 
Submitted by Anonymous on July 11th, 2017
By 2050, 70% of the world's population is projected to live and work in cities, with buildings as major constituents. Buildings' energy consumption contributes to more than 70% of electricity use, with people spending more than 90% of their time in buildings. Future cities with innovative, optimized building designs and operations have the potential to play a pivotal role in reducing energy consumption, curbing greenhouse gas emissions, and maintaining stable electric-grid operations. Buildings are physically connected to the electric power grid, thus it would be beneficial to understand the coupling of decisions and operations of the two. However, at a community level, there is no holistic framework that buildings and power grids can simultaneously utilize to optimize their performance. The challenge related to establishing such a framework is that building control systems are neither connected to, nor integrated with the power grid, and consequently a unified, global optimal energy control strategy at a smart community level cannot be achieved. Hence, the fundamental knowledge gaps are (a) the lack of a holistic, multi-time scale mathematical framework that couples the decisions of buildings stakeholders and grid stakeholders, and (b) the lack of a computationally-tractable solution methodology amenable to implementation on a large number of connected power grid-nodes and buildings. In this project, a novel mathematical framework that fills the aforementioned knowledge gaps will be investigated, and the following hypothesis will be tested: Connected buildings, people, and grids will achieve significant energy savings and stable operation within a smart city. The envisioned smart city framework will furnish individual buildings and power grid devices with custom demand response signals. The hypothesis will be tested against classical demand response (DR) strategies where (i) the integration of building and power-grid dynamics is lacking and (ii) the DR schemes that buildings implement are independent and individual. By engaging in efficient, decentralized community-scale optimization, energy savings will be demonstrated for participating buildings and enhanced stable operation for the grid are projected, hence empowering smart energy communities. To ensure the potential for broad adoption of the proposed framework, this project will be regularly informed with inputs and feedback from Southern California Edison (SCE). In order to test the hypothesis, the following research products will be developed: (1) An innovative method to model a cluster of buildings--with people's behavior embedded in the cluster's dynamics--and their controls so that they can be integrated with grid operation and services; (2) a novel optimization framework to solve complex control problems for large-scale coupled systems; and (3) a methodology to assess the impacts of connected buildings in terms of (a) the grid's operational stability and safety and (b) buildings' optimized energy consumption. To test the proposed framework, a large-scale simulation of a distribution primary feeder with over 1000 buildings will be conducted within SCE?s Johanna and Santiago substations in Central Orange County.
Off
University of California-Riverside
-
National Science Foundation
Nanpeng Yu
Submitted by David Corman on June 19th, 2017
Inadequate system understanding and inadequate situational awareness have caused large-scale power outages in the past. With the increased reliance on variable energy supply sources, system understanding and situational awareness of a complex energy system become more challenging. This project leverages the power of big data analytics to directly improve system understanding and situational awareness. The research provides the methodology for detecting anomalous events in real-time, and therefore allow control centers to take appropriate control actions before minor events develop into major blackouts. The significance for the society and for the power industry is profound. Energy providers will be able to prevent large-scale power outages and reduce revenue losses, and customers will benefit from reliable energy delivery with service guarantees. Students, including women and underrepresented groups, will be trained for the future workforce in this area. The project includes four major thrusts: 1) real-time anomaly detection from measurement data; 2) real-time event diagnosis and interpretation of changes in the state of the network; 3) real-time optimal control of the power grid; 4) scientific foundations underpinning cyber-physical systems. The major outcome of this project is practical solutions to event or fault detection and diagnosis in the power grid, as well as prediction and prevention of large-scale power outages.
Off
New Jersey Institute of Technology
-
National Science Foundation
Submitted by Maggie Cheng on June 19th, 2017
Event
ERTS² 2018
Embedded Real Time Software and Systems ( ERTS² 2018) The ERTS2 congress created by the late Jean-Claude Laprie in 2002 is a unique European cross sector event on Embedded Software and Systems, a platform for top-level scientists with representatives from universities, research centres, agencies and industries. The previous editions gathered more than 100 talks, 500 participants and 60 exhibitors. ERTS2 is both:
Submitted by Anonymous on June 9th, 2017
14th HONET-ICT International Conference "Smart Cities: Improving Quality of Life-Using ICT & IoT" Scope:
Submitted by Anonymous on May 8th, 2017
The 5th Conference on Sustainable Internet and ICT for Sustainability (SustainIT 2017) Funchal, Portugal - December 6-7, 2017 https://sustainit2017.m-iti.org CALL FOR PAPERS
Submitted by Anonymous on April 24th, 2017
Event
ELECO 2017
10th International Conference on Electrical and Electronics Engineering Aim and Scope The conference aims to provide a forum for electrical and electronics engineers and scientists in academia and industry to present their works and to share their experiences in the area of electrical and electronics engineering. Conference Topics
Submitted by Anonymous on April 14th, 2017
Event
ICESS 2017
14th IEEE International Conference on Embedded Software and Systems  (ICESS 2017) Sydney, Australia | August 1-4, 2017 | http://www.stprp-activity.com/ICESS2017 Co-Located with IEEE TrustCom and IEEE BigDataSE IMPORTANT DATES Paper submission deadline:  April 15, 2017 Notification of acceptance:  May 15, 2017 Final paper submission: June 1, 2017 As the fastest growing industry, embedded systems have great societal and environmental impacts. 
Submitted by Anonymous on March 6th, 2017
Resilience Week 2017 Wilmington, DE | September 18 - 22, 2017 | http://www.resilienceweek.com/ Resilience Week includes IEEE technically co-sponsored symposia dedicated to promising research in resilient systems that will protect cyber-physical infrastructures from unexpected and malicious threats – securing our way of life. 
Submitted by Anonymous on February 20th, 2017
Event
E3PE 2017
First International Conference on Energy, Power, Petroleum and Petrochemical Engineering (E3PE 2017) You are invited to participate in The First International Conference on Energy, Power, Petroleum and Petrochemical Engineering (E3PE 2017) that will be held in Faculty of Engineering, Lebanese University, Campus of Hadath, Beirut, Lebanon on April 26-28, 2017. The event will be held over three days, with presentations delivered by researchers from the international community, including presentations from keynote speakers and state-of-the-art lectures.
Submitted by Anonymous on January 27th, 2017
Subscribe to Energy