Applications of CPS technologies used in health care.
Cyber physical systems (CPSs) are merging into major mobile systems of our society, such as public transportation, supply chains, and taxi networks. Past researchers have accumulated significant knowledge for designing cyber physical systems, such as for military surveillance, infrastructure protection, scientific exploration, and smart environments, but primarily in relatively stationary settings, i.e., where spatial and mobility diversity is limited. Differently, mobile CPSs interact with phenomena of interest at different locations and environments, and where the context information (e.g., network availability and connectivity) about these physical locations might not be available. This unique feature calls for new solutions to seamlessly integrate mobile computing with the physical world, including dynamic access to multiple wireless technologies. The required solutions are addressed by (i) creating a network control architecture based on novel predictive hierarchical control and that accounts for characteristics of wireless communication, (ii) developing formal network control models based on in-situ network system identification and cross-layer optimization, and (iii) designing and implementing a reference implementation on a small scale wireless and vehicular test-bed based on law enforcement vehicles. The results can improve all mobile transportation systems such as future taxi control and dispatch systems. In this application advantages are: (i) reducing time for drivers to find customers; (ii) reducing time for passengers to wait; (iii) avoiding and preventing traffic congestion; (iv) reducing gas consumption and operating cost; (v) improving driver and vehicle safety, and (vi) enforcing municipal regulation. Class modules developed on mobile computing and CPS will be used at the four participating Universities and then be made available via the Web.
Off
Temple University
-
National Science Foundation
Submitted by Shan Lin on December 18th, 2015
Continuous real-time tracking of the eye and field-of-view of an individual is profoundly important to understanding how humans perceive and interact with the physical world. This work advances both the technology and engineering of cyber-physical systems by designing an innovative paradigm involving next-generation computational eyeglasses that interact with a user's mobile phone to provide the capability for real-time visual context sensing and inference. This research integrates novel research into low-power embedded systems, image representation, image processing and machine learning, and mobile sensing and inference, to advance the state-of-art in continuous sensing for CPS applications. The activity addresses several fundamental research challenges including: 1) design of novel, highly integrated, computational eyeglasses for tracking eye movements, the visual field of a user, and head movement patterns, all in real-time; 2) a unified compressive signal processing framework that optimizes sensing and estimation, while enabling re-targeting of the device to perform a broad range of tasks depending on the needs of an application; 3) design of a novel real-time visual context sensing system that extracts high-level contexts of interest from compressed data representations; and 4) a layer of intelligence that combines contexts extracted from the computational eyeglass together with contexts obtained from the mobile phone to improve energy-efficiency and sensing accuracy. This technology can revolutionize a range of disciplines including transportation, healthcare, behavioral science and market research. Continuous monitoring of the eye and field-of-view of an individual can enable detection of hazardous behaviors such as drowsiness while driving, mental health issues such as schizophrenia, addictive behavior and substance abuse, neurological disease progression, head injuries, and others. The research provides the foundations for such applications through the design of a prototype platform together with real-time sensor processing algorithms, and making these systems available through open source venues for broader use. Outreach for this project includes demonstrations of the device at science fairs for high-school students, and integration of the platform into undergraduate and graduate courses.
Off
University of Michigan Ann Arbor
-
National Science Foundation
Submitted by Dutta Prabal on December 18th, 2015
This project, investigating formal languages as a general methodology for task transfer between distinct cyber-physical systems such as humans and robots, aims to expand the science of cyber physical systems by developing Motion Grammars that will enable task transfer between distinct systems. Formal languages are tools for encoding, describing and transferring structured knowledge. In natural language, the latter process is called communication. Similarly, we will develop a formal language through which arbitrary cyber-physical systems communicate tasks via structured actions. This investigation of Motion Grammars will contribute to the science of human cognition and the engineering of cyber-physical algorithms. By observing human activities during manipulation we will develop a novel class of hybrid control algorithms based on linguistic representations of task execution. These algorithms will broaden the capabilities of man-made systems and provide the infrastructure for motion transfer between humans, robots and broader systems in a generic context. Furthermore, the representation in a rigorous grammatical context will enable formal verification and validation in future work. Broader Impacts: The proposed research has direct applications to new solutions for manufacturing, medical treatments such as surgery, logistics and food processing. In turn, each of these areas has a significant impact on the efficiency and convenience of our daily lives. The PIs serve as coordinators of graduate/undergraduate programs and mentors to community schools. In order to guarantee that women and minorities have a significant role in the research, the PIs will annually invite K-12 students from Atlanta schools with primarily African American populations to the laboratories. One-day robot classes will be conducted that engage students in the excitement of hands-on science by interactively using lab equipment to transfer their manipulation skills to a robot arm.
Off
Georgia Tech Research Corporation
-
National Science Foundation
Michael Stilman Submitted by Michael Stilman on December 18th, 2015
CALL FOR PAPERS 9th International Workshop on Computing with Terms and Graphs  (TERMGRAPH  2016) a Satellite Event of ETAPS 2016 Background
Submitted by Anonymous on December 17th, 2015
Event
ECYPS’2016
4th EUROMICRO/IEEE Workshop on Embedded and Cyber-Physical Systems (ECYPS’2016) ECYPS’2016 - the 4th EUROMICRO/IEEE Workshop on Embedded and Cyber-Physical Systems will be held in the scope of MECO’2016 - the 5th Mediterranean Conference on Embedded Computing. It is devoted to cyber-physical systems (CPS) for modern applications that usually require high-performance, low energy consumption, high safety, security and reliability.
Submitted by Anonymous on December 8th, 2015
13th IEEE International Conference on Ubiquitous Intelligence and Computing (IEEE UIC 2016) Ubiquitous sensors, devices, networks and information are paving the way towards a smart world in which computational intelligence is distributed throughout the physical environment to provide reliable and relevant services to people.
Submitted by Anonymous on December 8th, 2015
ISORC 2016 ISORC has become established as the leading event devoted to state-of-the-art research in the field of object/component/service-oriented real-time distributed computing (ORC) technology. In 2016, we have adopted a new theme, Real-Time Issues and Challenges for novel applications and systems: Medical devices, intelligent transportation systems, Industrial automation systems, Internet of Things and Smart Grids.
Submitted by Anonymous on December 4th, 2015
Event
IUPT 2016
CALL FOR PAPERS The 6th International Symposium on Internet of Ubiquitous and Pervasive Things (IUPT 2016) To be held in conjunction with Ambient Systems, Networks and Technologies Conference (ANT'16) May 23-26, 2016, Madrid, Spain |  Website: http://cs.adelaide.edu.au/~iupt2016/ IMPORTANT DATES
Submitted by Anonymous on November 10th, 2015
Event
DAC 2016
Design Automation Conference 2016 Austin Convention Center, Austin, Texas | June 5 - 9, 2016 | www.dac.com
Submitted by Anonymous on November 3rd, 2015
Event
IEA/AIE 2016
The Twenty Ninth International Conference on Industrial, Engineering & Other Applications of Applied Intelligent Systems (IEA/AIE-2016) Important Dates                  
Submitted by Anonymous on October 5th, 2015
Subscribe to Health Care