Applications of CPS technologies used in health care.
Event
ICCPS 2016
7th ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS 2016) held as part of CPS Week 2016 to be held in Vienna, Austria, from 11 to 14 April 2016.
Submitted by Anonymous on September 18th, 2015

Dear Colleague,

We would like to cordially invite you to contribute a book chapter to a forthcoming book entitled " Security and Privacy in Cyber-Physical Systems: Foundations and Applications", which will be published by Wiley (https://sites.google.com/site/wileycpsspbook/).

Cyber-physical systems (CPS) are engineered systems that are built from, and depend upon, the seamless integration of computational algorithms and physical components. Advances in CPS will enable capability, adaptability, scalability, resiliency, safety, security, and usability that will far exceed the simple embedded systems of today. CPS are subject to threats stemming from increasing reliance on computer and communication technologies. Security threats exploit the increased complexity and connectivity of critical infrastructure systems, placing the Nation’s security, economy, public safety, and health at risk. CPS blur the lines between infrastructural and personal spaces when they provide convenient access to public services or bridge the gap between personal property and public infrastructure. This blurring is being engineered into the Internet of Things (IoT), an important exponent of CPS. With IoT, personal CPS (like phones, appliances, and automobiles) bearing personal data can reach up into public infrastructures to access services. This connectivity can result in leakage of personal data with attendant privacy concerns. 

    The purpose of the book is to refine an understanding of the key technical, social and legal issues at stake, to understand the range of technical issues affecting hardware and software in infrastructure components, as well as the blending of such systems with personal CPS. This book will present the state of the art and the state of the practice of how to address the following unique security and privacy challenges facing CPS.


Call for Book Chapter Proposals
Chapter Proposal Submission by September 27, 2015.

Submission Procedure:
Please email your abstract (max. 500 words) by September 27, 2015 to cps.wiley@gmail.com.

Tentative Table of Contents – additions to the topics listed below are much welcome!

 

Part I: Foundations and Principles

Chapter 1. Cybersecurity and Privacy: Past, Present and Future

Chapter 2. The interplay of Cyber, Physical, and Human elements in CPS

Chapter 3. Adaptive attack mitigation for CPS

Chapter 4. Authentication and access control for CPS

Chapter 5. Availability, recovery and auditing for CPS

Chapter 6. Data security and privacy for CPS

Chapter 7. Intrusion detection for CPS

Chapter 8. Key management in CPS

Chapter 9. Legacy CPS system protection

Chapter 10. Lightweight crypto and security

Chapter 11. Threat modeling for CPS

Chapter 12. Vulnerability analysis for CPS

 

Part II: Application Domains 

Chapter 13.            Energy

Chapter 14.            Medical

Chapter 15.            Transportation

Chapter 16.            Physical Infrastructure

Chapter 17.            Manufacturing

Chapter 18.            Building

Chapter 19.            Agriculture

Chapter 20.            Robotics

Chapter 21.            Unmanned Aerial Vehicles

Chapter 22.            Smart Cities


Please provide the following points in your proposals/abstracts:
1. Title of the contribution,
2. Title of the chapter (of the tentative TOC) if the contribution refers to one of them,
3. Name of author, co-authors, institution, email-address,
4. Content/mission of the proposed article.

Authors of accepted proposals will be notified by the given deadline about the status of their proposals and sent chapter guidelines.

Full Book Chapter:
Complete chapters are required to be submitted to cps.wiley@gmail.com. Author could use LaTex or any word processing tools (MS Word, OpenDocument, etc.) while preparing the chapters. A book chapter is required to be 18 to 25 pages (8,000 to 10,000 words).

Please provide the following points in your contribution:
1. Chapter title
2. Author information (of all authors: title, first name, last name, organization, address, city, zip code, country, email address)
3. Abstract
4. 5-10 keywords
5. Text body
6. Bibliography

Important Dates:

·         Chapter Proposal Submission by: September 27, 2015

·         Author Notification by: October 11, 2015

·         Full Chapter Submission by: November 30, 2015

·         Review Results Returned by: December 31, 2015

·         Final Chapter Submission by: February 15, 2016

·         Anticipated Publication Date: Summer, 2016 

Editors:

Houbing Song, West Virginia University, USA. <Houbing.Song@mail.wvu.edu>

Glenn A. Fink, Pacific Northwest National Laboratory, USA. <Glenn.Fink@pnnl.gov>

Gilad L. Rosner, Internet of Things Privacy Forum, UK. <gilad@giladrosner.com>

Sabina Jeschke, RWTH Aachen University, Germany. <sabina.jeschke@ima-zlw-ifu.rwth-aachen.de>

General Announcement
Not in Slideshow
Houbing Song Submitted by Houbing Song on September 11th, 2015
Implantable Cardiac Defibrillators (ICDs) are at the forefront of preventing sudden death in patients suffering from ventricular arrhythmias. ICDs have evolved into complex Cyber-Physical Systems (CPS)which tightly sensing, hardware, and software to diagnose arrythmias based on electrogram signals and control cardiac excitation. These devices are life-critical, yet the Verification and Validation (V&V) techniques used for establishing their safety have remained somewhat informal, and rely largely on extensive unit testing. There have been a number of exciting developments in formal verification technologies. This proposal introduces these techniques into the ICD verification process, and will demonstrate their suitability for application in other medical devices. The project will develop a model-based framework for ICDs, and will apply formal verification techniques, such as model checking and reachability analysis, to high-fidelity cardiac electrophysiological models that capture the electrical excitation induced by the ICD's control software. Through extensive collaboration with FDA research staff, the proposal will demonstrate the effectiveness of formal verification technology and suitability in medical device applications.
Off
SUNY at Stony Brook
-
National Science Foundation
Scott Smolka
Submitted by Scott Smolka on August 27th, 2015
The project investigates a formal verification framework for artificial pancreas (AP) controllers that automate the delivery of insulin to patients with type-1 diabetes (T1D). AP controllers are safety critical: excessive insulin delivery can lead to serious, potentially fatal, consequences. The verification framework under development allows designers of AP controllers to check that their control algorithms will operate safely and reliably against large disturbances that include patient meals, physical activities, and sensor anomalies including noise, delays, and sensor attenuation. The intellectual merits of the project lie in the development of state-of-the-art formal verification tools, that reason over mathematical models of the closed-loop including external disturbances and insulin-glucose response. These tools perform an exhaustive exploration of the closed loop system behaviors, generating potentially adverse situations for the control algorithm under verification. In addition, automatic techniques are being investigated to help AP designers improve the control algorithm by tuning controller parameters to eliminate harmful behaviors and optimize performance. The broader significance and importance of the project are to minimize the manual testing effort for AP controllers, integrate formal tools in the certification process, and ultimately ensure the availability of safe and reliable devices to patients with type-1 diabetes. The framework is made available to researchers who are developing AP controllers to help them verify and iteratively improve their designs. The team is integrating the research into the educational mission by designing hands-on courses to train undergraduate students in the science of Cyber-Physical Systems (CPS) using the design of AP controllers as a motivating example. Furthermore, educational material that explains the basic ideas, current challenges and promises of the AP concept is being made available to a wide audience that includes patients with T1D, their families, interested students, and researchers. The research is being carried out collaboratively by teams of experts in formal verification for Cyber-Physical Systems, control system experts with experience designing AP controllers, mathematical modeling experts, and clinical experts who have clinically evaluated AP controllers. To enable the construction of the verification framework from the current state-of-the-art verification tools, the project is addressing major research challenges, including (a) building plausible mathematical models of disturbances from available clinical datasets characterizing human meals, activity patterns, and continuous glucose sensor anomalies. The resulting models are integrated in a formal verification framework; (b) simplifying existing models of insulin glucose response using smaller but more complex delay differential models; (c) automating the process of abstracting the controller implementation for the purposes of verification; (d) producing verification results that can be interpreted by control engineers and clinical researchers without necessarily understanding formal verification techniques; and (e) partially automating the process of design improvements to potentially eliminate severe faults and improve performance. The framework is evaluated on a set of promising AP controller designs that are currently under various stages of clinical evaluation.
Off
University of Colorado at Boulder
-
National Science Foundation
Sriram Sankaranarayanan
Sriram Sankaranarayanan Submitted by Sriram Sankaranarayanan on August 27th, 2015
This project aims to achieve key technology, infrastructure, and regulatory science advances for next generation medical systems based on the concept of medical application platforms (MAPs). A MAP is a safety/security-critical real-time computing platform for: (a) integrating heterogeneous devices and medical IT systems, (b) hosting application programs ("apps") that provide medical utility through the ability to both acquire information and update/control integrated devices, IT systems, and displays. The project will develop formal architectural and behavioral specification languages for defining MAPs, with a focus on techniques that enable compositional reasoning about MAP component interoperability and safety. These formal languages will include an extensible property language to enable the specification of real-time, quality-of-service, and attributes specific to medical contexts that can be leveraged by code generation, testing, and verification tools. The project will work closely with a synergistic team of clinicians, device industry partners, regulators, and medical device interoperability and safety standard organizations to develop an open source MAP innovation platform to enable key stakeholders within the nation's health care ecosphere to identify, prototype, and evaluate solutions to key technology and regulatory challenges that must be overcome to develop a commodity market of regulated MAP components. Because MAPs provide pre-built certified infrastructure and building blocks for rapidly developing multi-device medical applications, this research has the potential to usher in a new paradigm of medical system that significantly increases the pace of innovation, lowers development costs, enables new functionality by aggregating multiple devices into a system of systems, and achieves greater system safety.
Off
Kansas State University
-
National Science Foundation
Venkatesh Ranganath
John Hatcliff
John Hatcliff Submitted by John Hatcliff on August 27th, 2015
The objective of this project is to create a focused cyber-physical design environment to accelerate the development of miniature medical devices in general and swallowable systems in particular. The project develops new models and tools including a web-based integrated simulation environment,capturing the interacting dynamics of the computational and physical components of devices designed to work inside the human body, to enable wider design space exploration, and, ultimately, to lower the barriers which have thus far impeded system engineering of miniature medical devices. Currently, a few select individuals with deep domain expertise create these systems. The goal is to open this field to a wider community and at the same time create better designs through advanced tool support. The project defines a component model and corresponding domain-specific modeling language to provide a common framework for design capture, design space exploration, analysis and automated synthesis of all hardware and software artifacts. The project also develops a rich and extensible component and design template library that designers can reuse. The online design environment will provide early feedback and hence, it will lower the cost of experimentation with alternatives. The potential benefit is not just incremental (in time and cost), but can lead to novel ideas by mitigating the risk of trying unconventional solutions. Trends in consumer electronics such as miniaturization, low power operation, and wireless technologies have enabled the design of miniature devices that hold the potential to revolutionize medicine. Transformational societal public health benefits (e.g., early diagnosis of colorectal cancer or prevention of heart failure) are possible through less invasive and more accurate diagnostic and interventional devices. By eliminating large incisions in favor of natural orifices or small ports, these medical devices can increase diagnostic screening effectiveness and reduce pain and recovery time. Furthermore, if successful, the proposed scientific approach can be extended to any other application, wherever size, power efficiency, and high confidence are stringent requirements. The educational plan of the project is centered on the web-based design environment that will also contain an interface for high school students to experiment with medical cyber-physical devices in a virtual environment. Students will be able to build medical devices from a library of components, program them using an intuitive visual programming language and operate them in various simulated environments. A Summer Camp organized in the framework of this project will enhance students learning experience with real hands-on experimentation in a lab.
Off
Vanderbilt University
-
National Science Foundation
Pietro Valdastri
Pietro Valdastri Submitted by Pietro Valdastri on August 27th, 2015
Wireless body area sensing networks (WBANs) have the potential to revolutionize health care in the near term and enhance other application domains including sports, entertainment, military and emergency situations. These WBANs represent a novel cyber-physical system that unites engineering systems, the natural world and human individuals. The coupling of bio-sensors with a wireless infrastructure enables the real-time monitoring of an individual's health, environment and related behaviors continuously, as well as the provision of real-time feedback with nimble, adaptive, and personalized interventions. Recent technological advances in low power integrated circuits, signal processing and wireless communications have enabled the design of tiny, low cost, lightweight, intelligent medical devices, sensors and networking platforms that have the potential to make the concept of truly pervasive wireless sensor networks a reality. To develop the WBANs of the future, this breakthrough research will pursue the interfaces of sensing, communication and control. This project aims to investigate energy and delay sensitive sensing, communication, decision-making and control for health monitoring application of wireless body area networks. In these systems, sensors with varying accuracy observe heterogeneous source signals that must be processed and communicated and used for inference and decision-making purposes. All of these operations must be carried out in the presence of constraints on power and energy resources at the sensors, limited communication and computational abilities and with low end-to-end delay between the sensing of information to its eventual utilization. In this project, a global (end-to end) perspective is adopted that optimizes network operation to improve the information quality and enhance the lifetime of the network, focusing in particular on optimal use of sensor resources such as energy, new sensing and communication paradigms that balance information quality and energy expenditure, and real-time encoding and decoding methods that provide strict delay guarantees on information delivery. The proposed work will contribute to several research areas including optimal resource allocation at sensors, adaptive sensing methods, real-time encoding and decoding and event-based communication. The educational impact of the proposed research will come through the training of new information technology professionals and scientists with expertise in cross-disciplinary research, development of new courses based on the proposed research activity and continued efforts to include women and under-represented minorities in the research program.
Off
University of Southern California
-
National Science Foundation
Urbashi Mitra
Submitted by Urbashi Mitra on August 27th, 2015

CALL FOR WORKSHOP AND TUTORIAL PROPOSALS

Cyber-Physical Systems Week (CPS Week)

April 11-14, 2016 | Vienna, Austria | http://www.cpsweek.org/2016/

CPS Week is the premier event on Cyber-Physical Systems. It brings together four top conferences, HSCC, ICCPS, IPSN, and RTAS, 10-15 workshops, a localization competition, tutorials, and various exhibitions from both industry and academia. Altogether the CPS Week program covers a multitude of complementary aspects of CPS, and reunites the leading researchers in this dynamic field. CPS Week 2016 in Vienna, Austria, will host 10-15 workshops (subject to room availability) and 2-3 tutorials on Monday April 11 and is soliciting proposals for new and recurring workshops as well as for tutorials. CPS Week workshops are excellent opportunities to bring together researchers and practitioners from different  communities to share their experiences in an interactive atmosphere and to foster collaboration for new and innovative projects. We invite you to  submit workshop proposals on any topic related to the broad set of research, education, and application areas in cyber-physical systems.

Guidelines for workshop proposals:

Proposals should be submitted at the latest by *** October 1, 2015 ***

A workshop proposal consists of a 2-page maximum PDF file, including the following information:

  • A concise title of the workshop
  • Description of the topics and specific issues that the workshop will address, how the workshop complements CPS Week conferences and why the workshop theme is relevant
  • Expected format of the workshop (regular paper presentations, poster presentations, invited talks, panel discussions, demo sessions, or other ideas to promote active exchange of ideas)
  • Organizers with short bio, affiliation, and their expertise in the proposed topic(s)
  • In case the workshop has been previously held, provide information to show that the previous edition(s) were successful in terms of paper submissions and/or attendance. Links to past workshop editions would be very helpful too.
  • Length of the workshop (half-day/one-day) and the expected number of participants
  • Follow-up plans (if any) to disseminate the ideas from the workshop, for example through proceedings or journal special issue

Please submit your workshop proposal by email to the workshop and tutorial chairsChristoph Kirsch (ck@cs.uni-salzburg.at) and Ana Sokolova (anas@cs.uni-salzburg.at). Please write “[CPSWeek 2016] Workshop Proposal" in the e-mail subject line.

Guidelines for tutorial proposals:
Proposals should be submitted at the latest by *** October 1, 2015 ***

A proposal consists of a 2-page maximum PDF file, including the following  information on the tutorial program:

  • The title and abstract of the tutorial
  • An outline of tutorial content and objectives
  • Prerequisite knowledge
  • Organizers/Speakers with short bio, affiliation, and their expertise in the proposed topic(s)
  • In case the tutorial has been previously held, include information on the last tutorial of the same topic held within CPS Week or other conferences such as the year it was held and the number of attendees. A link to past tutorial would be very helpful too.
  • We envision tutorials to last for 3 hours.

Please submit your tutorial proposal by email to the workshop and tutorial chairs, Christoph Kirsch (ck@cs.uni-salzburg.at) and Ana Sokolova (anas@cs.uni-salzburg.at). Please write “[CPSWeek 2016] Tutorial Proposal" in the e-mail subject line.
———————————————————————————————————— 
Notification of acceptance  *** October 15, 2015 ***
———————————————————————————————————— 

General Announcement
Not in Slideshow
Submitted by Anonymous on August 25th, 2015
Event
WRD 2016
10th HiPEAC Workshop on Reconfigurable Computing (WRD 2016) January 19, 2016, Prague, Czech Republic | http://www.fe.up.pt/wrc2016
Submitted by Anonymous on August 25th, 2015
Event
ARD2016
FIRST CALL FOR PAPERS ARC2016: 12th International Symposium on Applied Reconfigurable Computing    21-24 March 2016 | Mangaratiba, Rio de Janeiro, Brazil |   http://lcr.icmc.usp.br/arc2016/
Submitted by Anonymous on August 25th, 2015
Subscribe to Health Care