Application of CPS technologies deployed in military contexts.
This CPS Frontiers project addresses highly dynamic Cyber-Physical Systems (CPSs), understood as systems where a computing delay of a few milliseconds or an incorrectly computed response to a disturbance can lead to catastrophic consequences. Such is the case of cars losing traction when cornering at high speed, unmanned air vehicles performing critical maneuvers such as landing, or disaster and rescue response bipedal robots rushing through the rubble to collect information or save human lives. The preceding examples currently share a common element: the design of their control software is made possible by extensive experience, laborious testing and fine tuning of parameters, and yet, the resulting closed-loop system has no formal guarantees of meeting specifications.
The vision of the project is to provide a methodology that allows for complex and dynamic CPSs to meet real-world requirements in an efficient and robust way through the formal synthesis of control software. The research is developing a formal framework for correct-by-construction control software synthesis for highly dynamic CPSs with broad applications to automotive safety systems, prostheses, exoskeletons, aerospace systems, manufacturing, and legged robotics.
The design methodology developed here will improve the competitiveness of segments of industry that require a tight integration between hardware and highly advanced control software such as: automotive (dynamic stability and control), aerospace (UAVs), medical (prosthetics, orthotics, and exoskeleton design) and robotics (legged locomotion). To enhance the impact of these efforts, the PIs are developing interdisciplinary teaching materials to be made freely available and disseminating their work to a broad audience.
Off
University of Michigan Ann Arbor
-
National Science Foundation

Event
IEEE UIC 2016
13th IEEE International Conference on Ubiquitous Intelligence and Computing (IEEE UIC 2016)
Ubiquitous sensors, devices, networks and information are paving the way towards a smart world in which computational intelligence is distributed throughout the physical environment to provide reliable and relevant services to people.
Dear Colleague,
We would like to cordially invite you to contribute a book chapter to a forthcoming book entitled " Security and Privacy in Cyber-Physical Systems: Foundations and Applications", which will be published by Wiley (https://sites.google.com/site/wileycpsspbook/).

The objective of this project is to research tools to manage uncertainty in the design and certification process of safety-critical aviation systems. The research focuses on three innovative ideas to support this objective. First, probabilistic techniques will be introduced to specify system-level requirements and bound the performance of dynamical components. These will reduce the design costs associated with complex aviation systems consisting of tightly integrated components produced by many independent engineering organizations. Second, a framework will be created for developing software components that use probabilistic execution to model and manage the risk of software failure. These techniques will make software more robust, lower the cost of validating code changes, and allow software quality to be integrated smoothly into overall system-level analysis. Third, techniques from Extreme Value Theory will be applied to develop adaptive verification and validation procedures. This will enable early introduction of new and advanced aviation systems. These systems will initially have restricted capabilities, but these restrictions will be gradually relaxed as justified by continual logging of data from in-service products.
The three main research aims will lead to a significant reduction in the costs and time required for fielding new aviation systems. This will enable, for example, the safe and rapid implementation of next generation air traffic control systems that have the potential of tripling airspace capacity with no reduction in safety. The proposed methods are also applicable to other complex systems including smart power grids and automated highways. Integrated into the research is an education plan for developing a highly skilled workforce capable of designing safety critical systems. This plan centers around two main activities: (a) creation of undergraduate labs focusing on safety-critical systems, and (b) integration of safety-critical concepts into a national robotic snowplow competition. These activities will provide inspirational, real-world applications to motivate student learning.
Off
Tufts University
-
National Science Foundation
Jason Rife
CALL FOR WORKSHOP AND TUTORIAL PROPOSALS
Cyber-Physical Systems Week (CPS Week)
April 11-14, 2016 | Vienna, Austria | http://www.cpsweek.org/2016/
File
Kumar_and_Kalil3.pdf

JULY 2015 | VOL. 58 | NO. 7 | COMMUNICATIONS OF THE ACM | Vijay Kumar and Thomas A. Kalil
Event
IWCPS’15
2nd International Workshop on Cyber-Physical Systems (IWCPS’15)
E-mail: iwcps2015@fedcsis.org
We would like to cordially invite you to consider contributing a paper to IWCPS 2015 - held as a part of the Federated Conference on Computer Science and Information Systems (FedCSIS 2015).
Event
SaFoMe 2015
2nd International Workshop on Safety and Formal Methods
Overview
The SaFoMe workshop aims at providing a forum for people from academia and industry to communicate their latest results on theoretical advances, industrial case studies, and lessons learned in the application of formal methods to safety certification, verification and/or validation in (but not limited to) component-based systems.
Event
DSN 2015
45th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)
The Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN) is the most prestigious international forum for presenting research results in the field of dependable and secure computing.