Application of CPS technologies deployed in military contexts.
Many critical infrastructures, such as the power grid, are complex cyber physical systems (CPS). Protecting these systems against cyber-attacks is of paramount importance to national security and economic well-being. Risk assessment considering cyber-attacks against critical infrastructures is not well understood due to ever growing, dynamic threat landscape coupled with complex cyber-physical interactions in these systems. In addition, there is a compelling need to create environments in which realistic attack-defense experiments (including risk assessment and risk mitigation) and training exercises can be safely conducted to advance the science and workforce development in this important area of national need.
This project has two key goals: (1) the short-term goal is to design, develop, and demonstrate a cyber defense exercise for improving the security of CPS systems in alignment with the NIST/US Ignite Global Cities Team Challenge; and (2) the long-term goal is to explore fundamental models and algorithms for cyber risk assessment and mitigation. The project makes synergistic federation of three existing security testbeds hosted at Iowa State University and the University of Southern California to create a realistic environment for conducting CPS security experimentation and security preparedness and training exercise, like the North American Reliability Corporation (NERC) GridEx. The intellectual merit of the project lies in two key contributions: (i) realistic experimentations on CPS security testbed federation, and (ii) the development of a novel methodology for cyber risk modeling of CPS systems. The broader impacts of the project lie in developing realistic attack-defense scenarios and learning/training modules that enable academic researchers, students, and industry practitioners to systematically understand, analyze, and improve the security and resiliency of critical infrastructures.
Off
Iowa State University
-
National Science Foundation
Douglas Jacobson
Alefiya Hussai
One of the challenges for the future cyber-physical systems is the exploration of large design spaces. Evolutionary algorithms (EAs), which embody a simplified computational model of the mutation and selection mechanisms of natural evolution, are known to be effective for design optimization. However, the traditional formulations are limited to choosing values for a predetermined set of parameters within a given fixed architecture. This project explores techniques, based on the idea of hidden genes, which enable EAs to select a variable number of components, thereby expanding the explored design space to include selection of a system's architecture. Hidden genetic optimization algorithms have a broad range of potential applications in cyber-physical systems, including automated construction systems, transportation systems, micro-grid systems, and space systems. The project integrates education with research by involving students ranging from high school through graduate school in activities commensurate with their skills, and promotes dissemination of the research results through open source distribution of algorithm implementation code and participation in the worldwide Global Trajectory Optimization Competition.
Instead of using a single layer of coding to represent the variables of the system in current EAs, this project investigates adding a second layer of coding to enable hiding some of the variables, as needed, during the search for the optimal system's architecture. This genetic hiding concept is found in nature and provides a natural way of handling system architectures covering a range of different sizes in the design space. In addition, the standard mutation and selection operations in EAs will be replaced by new operations that are intended to extract the full potential of the hidden gene model. Specific applications include space mission design, microgrid optimization, and traffic network signal coordinated planning.
Off
Michigan Technological University
-
National Science Foundation
Submitted by Ossama Abdelkhalik on December 22nd, 2015
Accurate and reliable knowledge of time is fundamental to cyber-physical systems for sensing, control, performance, and energy efficient integration of computing and communications. This statement underlies the proposal. Emerging CPS applications depend on precise knowledge of time to infer location and control communication. There is a diversity of semantics used to describe time, and quality of time varies as we move up and down the system stack. System designs tend to overcompensate for these uncertainties and the result is systems that may be over designed, inefficient, and fragile.
The intellectual merit derives from the new and fundamental concept of time and the holistic measure of quality of time (QoT) that captures metrics including resolution, accuracy, and stability. The proposal builds a system stack ("ROSELINE") that enables new ways for clock hardware, operating system, network services, and applications to learn, maintain and exchange information about time, influence component behavior, and robustly adapt to dynamic QoT requirements, as well as to benign and adversarial changes in operating conditions. Application areas that will benefit from Quality of Time will include: smart grad, networked and coordinated control of aerospace systems, underwater sensing, and industrial automation.
The broader impact of the proposal is due to the foundational nature of the work which builds a robust and tunable quality of time that can be applied across a broad spectrum of applications that pervade modern life. The proposal will also provide valuable opportunities to integrate research and education in graduate, undergraduate, and K-12 classrooms. There will be extensive outreach through publications, open sourcing of software, and participation in activities such as the Los Angeles Computing Circle for pre-college students.
Off
University of California at Los Angeles
-
National Science Foundation
Accurate and reliable knowledge of time is fundamental to cyber-physical systems for sensing, control, performance, and energy efficient integration of computing and communications. This statement underlies the proposal. Emerging CPS applications depend on precise knowledge of time to infer location and control communication. There is a diversity of semantics used to describe time, and quality of time varies as we move up and down the system stack. System designs tend to overcompensate for these uncertainties and the result is systems that may be over designed, inefficient, and fragile.
The intellectual merit derives from the new and fundamental concept of time and the holistic measure of quality of time (QoT) that captures metrics including resolution, accuracy, and stability. The proposal builds a system stack ("ROSELINE") that enables new ways for clock hardware, operating system, network services, and applications to learn, maintain and exchange information about time, influence component behavior, and robustly adapt to dynamic QoT requirements, as well as to benign and adversarial changes in operating conditions. Application areas that will benefit from Quality of Time will include: smart grad, networked and coordinated control of aerospace systems, underwater sensing, and industrial automation.
The broader impact of the proposal is due to the foundational nature of the work which builds a robust and tunable quality of time that can be applied across a broad spectrum of applications that pervade modern life. The proposal will also provide valuable opportunities to integrate research and education in graduate, undergraduate, and K-12 classrooms. There will be extensive outreach through publications, open sourcing of software, and participation in activities such as the Los Angeles Computing Circle for pre-college students.
Off
University of California at Santa Barbara
-
National Science Foundation
Accurate and reliable knowledge of time is fundamental to cyber-physical systems for sensing, control, performance, and energy efficient integration of computing and communications. This statement underlies the proposal. Emerging CPS applications depend on precise knowledge of time to infer location and control communication. There is a diversity of semantics used to describe time, and quality of time varies as we move up and down the system stack. System designs tend to overcompensate for these uncertainties and the result is systems that may be over designed, inefficient, and fragile.
The intellectual merit derives from the new and fundamental concept of time and the holistic measure of quality of time (QoT) that captures metrics including resolution, accuracy, and stability. The proposal builds a system stack ("ROSELINE") that enables new ways for clock hardware, operating system, network services, and applications to learn, maintain and exchange information about time, influence component behavior, and robustly adapt to dynamic QoT requirements, as well as to benign and adversarial changes in operating conditions. Application areas that will benefit from Quality of Time will include: smart grad, networked and coordinated control of aerospace systems, underwater sensing, and industrial automation.
The broader impact of the proposal is due to the foundational nature of the work which builds a robust and tunable quality of time that can be applied across a broad spectrum of applications that pervade modern life. The proposal will also provide valuable opportunities to integrate research and education in graduate, undergraduate, and K-12 classrooms. There will be extensive outreach through publications, open sourcing of software, and participation in activities such as the Los Angeles Computing Circle for pre-college students.
Off
Carnegie Mellon University
-
National Science Foundation
The objective of this project is to research tools to manage uncertainty in the design and certification process of safety-critical aviation systems. The research focuses on three innovative ideas to support this objective. First, probabilistic techniques will be introduced to specify system-level requirements and bound the performance of dynamical components. These will reduce the design costs associated with complex aviation systems consisting of tightly integrated components produced by many independent engineering organizations. Second, a framework will be created for developing software components that use probabilistic execution to model and manage the risk of software failure. These techniques will make software more robust, lower the cost of validating code changes, and allow software quality to be integrated smoothly into overall system-level analysis. Third, techniques from Extreme Value Theory will be applied to develop adaptive verification and validation procedures. This will enable early introduction of new and advanced aviation systems. These systems will initially have restricted capabilities, but these restrictions will be gradually relaxed as justified by continual logging of data from in-service products.
The three main research aims will lead to a significant reduction in the costs and time required for fielding new aviation systems. This will enable, for example, the safe and rapid implementation of next generation air traffic control systems that have the potential of tripling airspace capacity with no reduction in safety. The proposed methods are also applicable to other complex systems including smart power grids and automated highways. Integrated into the research is an education plan for developing a highly skilled workforce capable of designing safety critical systems. This plan centers around two main activities: (a) creation of undergraduate labs focusing on safety-critical systems, and (b) integration of safety-critical concepts into a national robotic snowplow competition. These activities will provide inspirational, real-world applications to motivate student learning.
Off
University of Minnesota-Twin Cities
-
National Science Foundation
Project
2012 SoS Community Meeting
This proposed task provides the support for a community meeting by the Federal agencies, whose mission is to advance the science and technology of cyber security, with leading experts and researchers in academia, industry, and government at the Gaylord National Hotel and Convention Center, National Harbor, Maryland. This meeting will focus on recent progress in developing the scientific foundation for the design and analysis of trusted systems.
Over 150 leaders from government, industry, and the academic community met to discuss new and ongoing programs in security science being pursued by U.S. government research sponsors, and an exciting new Cybersecurity Research Institute recently established in the U.K. The presentations included work in a broad range of disciplines including mathematics, computer science, behavioral science, economics, physics, and biology. The meeting introduced a new Science of Security Virtual Organization website designed to promote research collaboration and community development. NSA's Director of Research concluded the meeting with the announcement of a Cybersecurity Science Paper Competition.
Off
Vanderbilt University
-
National Science Foundation
Submitted by Chris vanBuskirk on December 18th, 2015
This CPS Frontiers project addresses highly dynamic Cyber-Physical Systems (CPSs), understood as systems where a computing delay of a few milliseconds or an incorrectly computed response to a disturbance can lead to catastrophic consequences. Such is the case of cars losing traction when cornering at high speed, unmanned air vehicles performing critical maneuvers such as landing, or disaster and rescue response bipedal robots rushing through the rubble to collect information or save human lives. The preceding examples currently share a common element: the design of their control software is made possible by extensive experience, laborious testing and fine tuning of parameters, and yet, the resulting closed-loop system has no formal guarantees of meeting specifications.
The vision of the project is to provide a methodology that allows for complex and dynamic CPSs to meet real-world requirements in an efficient and robust way through the formal synthesis of control software. The research is developing a formal framework for correct-by-construction control software synthesis for highly dynamic CPSs with broad applications to automotive safety systems, prostheses, exoskeletons, aerospace systems, manufacturing, and legged robotics.
The design methodology developed here will improve the competitiveness of segments of industry that require a tight integration between hardware and highly advanced control software such as: automotive (dynamic stability and control), aerospace (UAVs), medical (prosthetics, orthotics, and exoskeleton design) and robotics (legged locomotion). To enhance the impact of these efforts, the PIs are developing interdisciplinary teaching materials to be made freely available and disseminating their work to a broad audience.
Off
Carnegie Mellon University
-
National Science Foundation
This CPS Frontiers project addresses highly dynamic Cyber-Physical Systems (CPSs), understood as systems where a computing delay of a few milliseconds or an incorrectly computed response to a disturbance can lead to catastrophic consequences. Such is the case of cars losing traction when cornering at high speed, unmanned air vehicles performing critical maneuvers such as landing, or disaster and rescue response bipedal robots rushing through the rubble to collect information or save human lives. The preceding examples currently share a common element: the design of their control software is made possible by extensive experience, laborious testing and fine tuning of parameters, and yet, the resulting closed-loop system has no formal guarantees of meeting specifications.
The vision of the project is to provide a methodology that allows for complex and dynamic CPSs to meet real-world requirements in an efficient and robust way through the formal synthesis of control software. The research is developing a formal framework for correct-by-construction control software synthesis for highly dynamic CPSs with broad applications to automotive safety systems, prostheses, exoskeletons, aerospace systems, manufacturing, and legged robotics.
The design methodology developed here will improve the competitiveness of segments of industry that require a tight integration between hardware and highly advanced control software such as: automotive (dynamic stability and control), aerospace (UAVs), medical (prosthetics, orthotics, and exoskeleton design) and robotics (legged locomotion). To enhance the impact of these efforts, the PIs are developing interdisciplinary teaching materials to be made freely available and disseminating their work to a broad audience.
Off
University of California at Los Angeles
-
National Science Foundation
Submitted by Paulo Tabuada on December 18th, 2015
This CPS Frontiers project addresses highly dynamic Cyber-Physical Systems (CPSs), understood as systems where a computing delay of a few milliseconds or an incorrectly computed response to a disturbance can lead to catastrophic consequences. Such is the case of cars losing traction when cornering at high speed, unmanned air vehicles performing critical maneuvers such as landing, or disaster and rescue response bipedal robots rushing through the rubble to collect information or save human lives. The preceding examples currently share a common element: the design of their control software is made possible by extensive experience, laborious testing and fine tuning of parameters, and yet, the resulting closed-loop system has no formal guarantees of meeting specifications.
The vision of the project is to provide a methodology that allows for complex and dynamic CPSs to meet real-world requirements in an efficient and robust way through the formal synthesis of control software. The research is developing a formal framework for correct-by-construction control software synthesis for highly dynamic CPSs with broad applications to automotive safety systems, prostheses, exoskeletons, aerospace systems, manufacturing, and legged robotics.
The design methodology developed here will improve the competitiveness of segments of industry that require a tight integration between hardware and highly advanced control software such as: automotive (dynamic stability and control), aerospace (UAVs), medical (prosthetics, orthotics, and exoskeleton design) and robotics (legged locomotion). To enhance the impact of these efforts, the PIs are developing interdisciplinary teaching materials to be made freely available and disseminating their work to a broad audience.
Continued on award #1562236: http://cps-vo.org/node/24060
Off
Texas A&M Engineering Experiment Station
-
National Science Foundation
Submitted by Aaron Ames on December 18th, 2015