Modernized electrical grid automated to improve the efficiency, reliability, economics, and sustainability of the production and distribution of electricity.
Event
SCCTSA 2016
The 3rd International Workshop on Smart City Clouds: Technologies, Systems and Applications (SCCTSA2016) http://www1.uwe.ac.uk/et/research/cccs/events/scctsa2016.aspx   co-located with the 9th IEEE/ACM International Conference on Utility and Cloud Computing (UCC2016) December 6-9, 2016 | Tongji University | Shanghai, China | http://computing.derby.ac.uk/ucc2016/   Key topics: Topics of interest include (but are not limited to):
Submitted by Anonymous on July 6th, 2016
12th International Conference on Semantic Systems (SEMANTiCS 2016 ) The annual SEMANTiCS conference is the meeting place for professionals who make semantic computing work, who understand its benefits and encounter its limitations. Every year, SEMANTiCS attracts information managers, IT-architects, software engineers and researchers from organisations ranging from NPOs, through public administrations to the largest companies in the world.
Submitted by Anonymous on July 6th, 2016
Event
CyPhy 2016
Call for Papers Workshop on Design, Modeling and Evaluation of Cyber Physical Systems (CyPhy 2016) Held in conjunction with ESWEEK 2016 October 6 2016 | Pittsburgh, PA, USA | http://www.cyphy.org/
Submitted by Anonymous on June 10th, 2016
Smart Cities Week Smart Cities Week® is the first major smart cities event in North America to bring together public and private sector visionaries, including officials from all levels of government and leading companies actively deploying smart technologies in cities around the globe.  This premier event, hosted by the Smart Cities Council, will showcase leading-edge companies and cutting-edge solutions in fresh and exciting ways. Contact us today to learn about Diamond, Gold and Platinum sponsorship opportunities.
Submitted by Anonymous on May 19th, 2016
Event
MSWiM 2016
19th ACM*/IEEE*  19th Annual International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM 2016) *Pending Upon Approval
Submitted by Anonymous on April 27th, 2016
Event
EUC 2016
14th IEEE International Conference on Embedded and Ubiquitous Computing (EUC 2016)  Paris, France | August 24-26, 2016 | http://euc2016.conferences-events.org/ In conjunction with DCABES 2016 and CSE 2016 by MINES ParisTech - Research University, CentraleSupelec and UFC/FEMTO-ST Institute Introduction
Submitted by Anonymous on April 26th, 2016
Event
FISP 2016
The Second  International Workshop on Future Information Security, Privacy and Forensics for Complex systems (FISP 2016) In Conjunction with the 11th International Conference on Future Networks and Communications (FNC'16)  Topics of Interest: 
Submitted by Anonymous on April 26th, 2016
Event
IOTNAT 2016
The Second International Workshop on Internet of Things: Networking Applications and Technologies (IOTNAT 2016) In Conjunction with the 11th International Conference on Future Networks and Communications (FNC'16) Topics of Interests:
Submitted by Anonymous on April 26th, 2016
Power systems have seen many changes over the last decade including the increased penetration of renewable generation, electric vehicles and new technologies for sensing, communication and control of a Smart Grid. The most significant impact of these changes are being felt at the consumer level. The ability for consumers and end devices to buy and sell energy and related services in a dynamic and interactive manner is expected to create a transactive energy market as highlighted in the Dec 2014 report of GridWise Alliance. Modeling and preparing the physical system to respond to the somewhat unpredictable behavior of active consumers over a cyber-infrastructure will be critical for maintaining grid reliability. Understanding the impact of such active consumers on the operational and business policies of the distribution utility requires advances in core system science that spans the areas of power engineering, economics, statistical signal processing, game theory, distributed control, multi-agent systems and cyber security. In conjunction with industrial partners, Westar Energy (the largest electric company in Kansas) and Kansas City Power and Light, the PIs plan to develop an architecture that requires little change to the existing investment in power distribution systems while allowing for the dynamic, adaptive control required to integrate active consumers with current and future combinations of high-variability distributed power sources, such as Photo-voltaic (PV) generators and storage batteries. In contrast to prior related efforts that primarily focus on demand response and distributed generation management with a single home/user centric approach, the proposed approach takes a holistic system perspective that includes cumulative modeling of multiple stochastic active consumers and the cyber infrastructure over which they may interact. Specific research thrusts include: (1) a general, extensible, and secure cyber architecture based on holonic multi-agent principles that provides a pathway to the emerging area of transactive energy market in power distribution systems, but also provides foundation for other engineered systems with active consumers; (2) new analytical insights into generalized stochastic modeling of consumer response to real]time price of electricity and the impact of such active consumers on grid reliability and security, and (3) novel methodology for comprehensive distributed control and management of power distribution systems with active consumers and high penetration of distributed renewable resources. Active consumers are an integral part of the Smart City vision where cyber systems are integrated into the transportation, energy, healthcare and biomedical, and critical infrastructure systems. Successful completion of this project will result in modeling, control, analysis and simulation architectures for all such active consumer driven CPS domains. The resulting gains in operating efficiency, economics, reliability and security will result in overall welfare for the society.
Off
Kansas State University
-
National Science Foundation
Anil  Pahwa Submitted by Anil Pahwa on April 11th, 2016
Many practical systems such as smart grid, unmanned aerial vehicles (UAVs) and robotic networks can be categorized as cyber physical systems (CPS). A typical CPS consists of physical dynamics, sensors, communication network and controllers. The communication network is of key importance in CPS, since it mimics the nerve system in the human body. Hence, it is critical to study how the communication network in CPS should be analyzed and designed. Essentially, communications stem from the uncertainty of system under consideration; random perturbations increase the system uncertainty, which is reduced by the control actions in CPS. It is well known that entropy is a measure of system uncertainty. A unified framework of entropy is used for CPS, in which random perturbations create entropy while communications and controls provide negative entropy to compensate the entropy generation. The intellectual merits are the novel framework of entropy for bridging the communications and control in CPS and the new design criterion based on the entropy of system state for CPS. The project's broader significance and importance are the education of various levels of students, the dissemination of results to public, and the impact on everyday life such as the improved agility and robustness of power grids. This project applies the framework of entropy to study the interdependencies of communications and control, thus facilitating the analysis and design of communications in CPS. The following tasks are tackled in the project: (a) Entropy Flow Based Communication Capacity Analysis in which communications in CPS is analyzed by studying the entropy fields in the physical dynamics, thus providing an estimation on the scale (bits/second) of communication capacity budget; (b) Communication Network Topology Design in which the design of the network topology (either physical or logical) is tackled through both optimization-based or heuristic approaches; (c) Online Network Resource Scheduling which refines the network resource scheduling during the operation using both optimization-based and heuristic approaches, within the framework of entropy fields; (d) Hardware Emulation Testbed which delivers a co-simulation testbed based on real time digital power simulator (RTDS) and a communication simulator, in the context of smart grids. Based on the research, new courses are developed. K-12 outreach and various levels of undergraduate/graduate educations are incorporated into the research.
Off
University of Tennessee Knoxville
-
National Science Foundation
Submitted by Husheng Li on April 5th, 2016
Subscribe to Smart Grid