Modernized electrical grid automated to improve the efficiency, reliability, economics, and sustainability of the production and distribution of electricity.
Smart grid includes two interdependent infrastructures: power transmission and distribution network, and the supporting telecommunications network. Complex interactions among these infrastructures lead to new pathways for attack and failure propagation that are currently not well understood. This innovative project takes a holistic multilevel approach to understand and characterize the interdependencies between these two infrastructures, and devise mechanisms to enhance their robustness. Specifically, the project has four goals. The first goal is to understand the standardized smart grid communications protocols in depth and examine mechanisms to harden them. This is essential since the current protocols are notoriously easy to attack. The second goal is to ensure robustness in state estimation techniques since they form the basis for much of the analysis of smart grid. In particular, the project shall exploit a steganography-based approach to detect bad data and compromised devices. The third goal is to explore trust-based attack detection strategies that combine the secure state estimation with power flow models and software attestation to detect and isolate compromised components. The final goal is to study reconfiguration strategies that combine light-weight prediction models, stochastic decision processes, intentional islanding, and game theory techniques to mitigate the spreading of failures and the loss of load. A unique aspect of smart grid security that will be studied in this project is the critical importance of timeliness, and thus a tradeoff between effectiveness of the mechanisms and the overhead introduced. The project is expected to provide practical techniques for making the smart grid more robust against failures and attacks, and enable it to recover from large scale failures with less loss of capacity. The project will also train students in the multidisciplinary areas of power systems operation and design, networking protocols, and cyber-physical security.
Off
Temple University
-
National Science Foundation
Krishna Kant Submitted by Krishna Kant on April 5th, 2016
Event
FTC 2016
Future Technologies Conference 2016 - FTC 2016 6-7 December 2016 | San Francisco, United States | www.SAIConference.com/FTC2016 Sponsored by HPCC Systems FTC attracts researchers, scientists and technologists from some of the top companies, universities, research firms and government agencies from around the world. The conference is predicated on the successful conferences by The Science and Information (SAI) Organization that have been held in the UK since 2013.
Submitted by Anonymous on April 4th, 2016

Smart grid includes two interdependent infrastructures: power transmission and distribution network, and the supporting telecommunications network. Complex interactions among these infrastructures lead to new pathways for attack and failure propagation that are currently not well understood. This innovative project takes a holistic multilevel approach to understand and characterize the interdependencies between these two infrastructures, and devise mechanisms to enhance their robustness. Specifically, the project has four goals. The first goal is to understand the standardized smart grid communications protocols in depth and examine mechanisms to harden them. This is essential since the current protocols are notoriously easy to attack. The second goal is to ensure robustness in state estimation techniques since they form the basis for much of the analysis of smart grid. In particular, the project shall exploit a steganography-based approach to detect bad data and compromised devices. The third goal is to explore trust-based attack detection strategies that combine the secure state estimation with power flow models and software attestation to detect and isolate compromised components. The final goal is to study reconfiguration strategies that combine light-weight prediction models, stochastic decision processes, intentional islanding, and game theory techniques to mitigate the spreading of failures and the loss of load. A unique aspect of smart grid security that will be studied in this project is the critical importance of timeliness, and thus a tradeoff between effectiveness of the mechanisms and the overhead introduced. The project is expected to provide practical techniques for making the smart grid more robust against failures and attacks, and enable it to recover from large scale failures with less loss of capacity. The project will also train students in the multidisciplinary areas of power systems operation and design, networking protocols, and cyber-physical security.

Off
Missouri Science and Technology
-
National Science Foundation
Mariesa Crow
Submitted by Anonymous on March 15th, 2016
Exploiting inherent physical structure of the CPS domains can lead to economically viable and efficient novel algorithms for providing performance, control, synchronization and an alternate approach to CPS security that does not rely solely on cryptography. In each of these systems, regardless of the current state of the network, in the presence of disturbances or adversarial inputs, there is a need to bring the system to desired state for performance and control of the network. This project presents one such novel approach by observing that the CPS applications including smartgrid, coordinating robotics, formation flights in UAV, and synchronization of biological systems including brain networks all exhibit a special physical structure, namely submodularity, with respect to the set of control actions. Submodularity is a diminishing returns property that enables the development of efficient algorithms with provable optimality guarantees and in many cases distributed versions that are locally implementable, and hence scalable. While it has been widely used in the machine learning and discrete optimization communities, the use of submodularity in the context of CPS is a fertile research area. This project initially applies submodularity in the context of smart grid and show how it can lead to greater system stability and attack resilience. By defining suitable metrics that capture the submodular structures underlying the physical dynamics, the researchers develop algorithms that eliminate the time-consuming and computationally expensive verification of control actions through simulation. The fundamental properties of synchronization, convergence, robustness, and attack-resilience considered in this effort have crosscutting applications to multiple CPS domains, which will benefit from the submodular approach that we will research and develop.
Off
University of Washington
-
National Science Foundation
Linda Bushnell Submitted by Linda Bushnell on March 9th, 2016
The 35th International Conference on Computer Safety, Reliability and Security (SAFECOMP2016) ABOUT SAFECOMP
Submitted by Anonymous on February 3rd, 2016
This award is supporting travel for sixteen researchers to attend the Public Policy Issues in Cyber-Security and Privacy for Small Grid Technology to be held Chicago, IL, September 30th - Oct 1st, 2009. Background: The push toward more economic and cleaner electricity supply is spearheading the implementation of smart grid technology in the electricity industry. The effective deployment of digital communication and control technology in the smart grid raises concerns over cyber-security and privacy. While some of these concerns pertain to the technology aspects, there are numerous issues of a policy nature that have not been adequately explored. The goal of the workshop is to support dialog on public policy issues in cyber-security and privacy for smart grid technology. It will bring together interested stakeholders, domain experts, and policy makers from government agencies, national labs, universities, developers and vendors, industry associations, and consumer organizations from the U.S. and other countries. The workshop is designed to provide a forum for the in-depth discussion of the most pressing issues and to address policy requirements for providing practical ways to safeguard the cyber-security of the smart grid technology and to insure that the privacy concerns of individuals are effectively addressed. The sessions of the workshop will focus on thematic thrusts in the areas of need for regulation or self-regulation, the key policy musts, and the role of standards in the assurance of cyber-security and privacy. The workshop is co-funded by the McArthur foundation.
Off
University of Illinois at Urbana-Champaign
-
National Science Foundation
George Gross Submitted by George Gross on January 11th, 2016
Large-scale applications of cyber-physical systems (CPS) such as commercial buildings with Building Automation System (BAS)-based demand response (DR) can play a key role in alleviating demand peaks and associated grid stress, increased electricity unit cost, and carbon emissions. However, benefits of BAS alone are often limited because their demand peak reduction cannot be maintained long enough without unduly affecting occupant comfort. This project seeks to develop control algorithms to closely integrate battery storage-based DR with existing BAS capabilities. The overarching objective is to expand the building's DR capabilities, providing crucial benefits towards smarter grids, while maintaining appropriate occupant comfort and reducing building ownership cost. This project follows a 2-phase approach towards more effective integration. First, building peak demand forecasting will be added to existing battery dispatch methods. Under electricity tariffs geared towards daily [monthly] peaks, such forecasting could result in the same battery-enabled demand charge (dollars per kW) savings as previously demonstrated storage dispatch algorithms. However, supply charges (dollars per kWh) and associated emissions would be reduced because battery dispatch would be geared towards reducing only the biggest daily [monthly] peaks while not incurring roundtrip charging losses on more moderate peaks. Phase 2 builds on phase 1, adding closer integration and systematic optimization to the algorithms for forecasting, BAS, and battery dispatch. This integration will allow the integrated CPS to manipulate the BAS process itself, thereby optimizing, e.g., light dimming, temperature set-points, and pre-cooling in unison with battery-based DR. Feasibility and future promise of such experimental control methodology will be measured by a multi-objective cost function which includes demand and energy charges, savings from DR participation, storage equipment capital expenditure (required size, achievable lifetime), and occupant comfort. Integrating BAS- with battery-based DR is nascent, mostly because the peak demand forecast, BAS, and storage dispatch algorithms that such a CPS requires have yet to be developed. This project seeks to lay important methodological groundwork for such applications, thus furthering commercial buildings' role in the Internet of Things. The PI's participation in the NIST/US-Ignite Global City Team Challenge (with partners Urban Electric Power, Siemens Corporate Technology, City University of New York, and NY-Best) furthers public engagement with such technology and will help catalyze its translation into the commercial space.
Off
Columbia University
-
National Science Foundation
Submitted by Christoph Meinrenken on December 22nd, 2015
It is now recognized that cloud data centers are a significant consumer of energy resources and a substantial source of greenhouse gas emission. On the other hand, the intermittency and uncertainty of renewable energy present a daunting operating challenge for the electricity grid. The key idea behind this CRII: Cyber-Physical Systems project is that these two challenges are in fact symbiotic: data centers can be virtual batteries for the electricity grid. Specifically, data centers are large loads, but are also flexible. If the electricity grid can call on the flexibilities of data centers via appropriate demand response programs, this will be a crucial tool for easing the incorporation of renewable energy into the electricity grid. Unfortunately, despite the great potential, the current reality is that data centers perform little demand response. This project aims at the interdisciplinary challenges of enabling demand response from cloud data centers to realize the societal benefits. The overarching goal of this project is to develop an intellectual framework to understand and guide the realization of demand response from cloud data centers, to address engineering and economic challenges in order to manage the daunting risk. This project will first quantify the potential economic and environmental benefits of demand response from cloud data centers. The quantification includes the societal cost savings and emission reductions from networked data centers through geographical load balancing, and the impacts of demand response taxonomy. Built upon the first thrust, this project will continue to tackle the interdisciplinary challenges of both local control algorithm design and global market design for data center demand response in order to facilitate their participation in various demand response programs. The researchers will study prediction-based pricing design and analysis, demand response program design based on optimization decomposition, and distributed online algorithm design for risk management and distributed control. The results of this project will, at the societal level, help utility companies and load serving entities realize the great potential that lies in the Cloud, and, furthermore, design demand response programs that provide right incentives for data center operators to participate. At a local level, this project will help guide the management of geographically distributed data centers in participating in the right demand response programs. The control algorithms and demand response programs, as well as the methodology, can be applied beyond data centers. This research will create new knowledge in distributed online algorithm design and optimization-based market design. Additionally, this project will help design an interdisciplinary course Sustainable IT and IT for Sustainability. Personnel involved in this project, graduates and undergraduates, will receive innovation experiences through the algorithm design, analysis, implementation, and testing.
Off
SUNY at Stony Brook
-
National Science Foundation
Submitted by Zhenhua Liu on December 22nd, 2015
This proposal will establish a framework for developing distributed Cyber-Physical Systems operating in a Networked Control Systems (NCS) environment. Specific attention is focused on an application where the computational, and communication challenges are unique due to the sheer size of the physical system, and communications between system elements include potential for significant losses and delays. An example of this is the power grid which includes large-scale deployment of distributed and networked Phasor Measurement Units (PMUs) and wind energy resources. Although, much has been done to model and analyze the impact of data dropouts and delay in NCS at a theoretical level, their impact on the behavior of cyber physical systems has received little attention. As a result much of the past research done on the `smart grid' has oversimplified the `physical' portion of the model, thereby overlooking key computational challenges lying at the heart of the dimensionality of the model and the heterogeneity in the dynamics of the grid. A clear gap has remained in understanding the implications of uncertainties in NCS (e.g. bandwidth limitations, packet dropout, packet disorientation, latency, signal loss, etc.) cross-coupled with the uncertainties in a large power grid with wind farms (e.g. variability in wind power, fault and nonlinearity, change in topology etc.) on the reliable operation of the grid. To address these challenges, this project will, for the first time, develop a modeling framework for discovering hitherto unknown interactions through co-simulation of NCS, distributed computing, and a large power grid included distributed wind generation resources. Most importantly, it addresses challenges in distributed computation through frequency domain abstractions and proposes two novel techniques in grid stabilization during packet dropout. The broader impact lies in providing deeper understanding of the impact of delays and dropouts in the Smart Grid. This will enable a better utilization of energy transmission assets and improve integration of renewable energy sources. The project will facilitate participation of women in STEM disciplines, and will include outreach with local Native American tribal community colleges This project will develop fundamental understanding of impact of network delays and drops using an approach that is applicable to a variety of CPS. It will enable transformative Wide-Areas Measurement Systems research for the smart grid through modeling adequacy studies of a representative sub-transient model of the grid along with the representation of packet drop in the communication network by a Gilbert model. Most importantly, fundamental concepts of frequency domain abstraction including balanced truncation and optimal Hankel-norm approximation are proposed to significantly reduce the burden of distributed computing. Finally, a novel `reduced copy' approach and a `modified Kalman filtering' approach are proposed to address the problem of grid stabilization using wind farm controls when packet drop is encountered.
Off
North Dakota State University Fargo
-
National Science Foundation
Nilanjan Ray Chaudhuri Submitted by Nilanjan Ray Chaudhuri on December 22nd, 2015
The electric power grid is a complex cyber-physical system (CPS) that forms the lifeline of modern society. Cybersecurity and resiliency of the power grid is of paramount importance to national security and economic well-being. CPS security testbeds are enabling technologies that provide realistic experimental platforms for the evaluation and validation of security technologies within controlled environments, and they also enable the exploration of robust security solutions. The project has two objectives: (a) to develop innovative architectures, abstractions, models, and algorithms for large-scale CPS security testbeds; and (b) to design and implement a high-fidelity, scalable, open-access CPS security testbed for the smart grid, and to conduct research experimentation. The testbed integrates appropriate cyber-control-physical hardware/software components, models, and algorithms in a modular design that enables federation of smaller testbeds to form a large-scale virtual experimental environment. The use cases for the testbed include vulnerability assessment, risk assessment, risk mitigation studies, and attack-defense exercises. The project also aims to develop standardized datasets, models, libraries, and use cases, and make the testbed available to a broader research community through an open-, remote-access model by leveraging collaboration from academic and industry partners. Besides contributing to research and technology that will enable a future electric power grid that is secure and resilient, this project develops and disseminates innovative curriculum modules including CPS Cyber Defense Competitions (CPS-CDC) for imparting security knowledge to students via an inquiry-based learning paradigm. The project also mentors students, including underrepresented minorities, in thesis work and Capstone projects, and exposes high-school students to cybersecurity concepts via testbed demonstrations.
Off
Iowa State University
-
National Science Foundation
Douglas Jacobson
Submitted by Manimaran Govindarasu on December 22nd, 2015
Subscribe to Smart Grid