The terms denote educational areas that are part of the CPS technology.
Designing semi-autonomous networks of miniature robots for inspection of bridges and other large civil infrastructure According to the U.S. Department of Transportation, the United States has 605102 bridges of which 64% are 30 years or older and 11% are structurally deficient. Visual inspection is a standard procedure to identify structural flaws and possibly predict the imminent collapse of a bridge and determine effective precautionary measures and repairs. Experts who carry out this difficult task must travel to the location of the bridge and spend many hours assessing the integrity of the structure. The proposal is to establish (i) new design and performance analysis principles and (ii) technologies for creating a self-organizing network of small robots to aid visual inspection of bridges and other large civilian infrastructure. The main idea is to use such a network to aid the experts in remotely and routinely inspecting complex structures, such as the typical girder assemblage that supports the decks of a suspension bridge. The robots will use wireless information exchange to autonomously coordinate and cooperate in the inspection of pre-specified portions of a bridge. At the end of the task, or whenever possible, they will report images as well as other key measurements back to the experts for further evaluation. Common systems to aid visual inspection rely either on stationary cameras with restricted field of view, or tethered ground vehicles. Unmanned aerial vehicles cannot access constricted spaces and must be tethered due to power requirements and the need for uninterrupted communication to support the continual safety critical supervision by one or more operators. In contrast, the system proposed here would be able to access tight spaces, operate under any weather, and execute tasks autonomously over long periods of time. The fact that the proposed framework allows remote expert supervision will reduce cost and time between inspections. The added flexibility as well as the increased regularity and longevity of the deployments will improve the detection and diagnosis of problems, which will increase safety and support effective preventive maintenance. This project will be carried out by a multidisciplinary team specialized in diverse areas of cyber-physical systems and robotics, such as locomotion, network science, modeling, control systems, hardware sensor design and optimization. It involves collaboration between faculty from the University of Maryland (UMD) and Resensys, which specializes in remote bridge monitoring. The proposed system will be tested in collaboration with the Maryland State Highway Administration, which will also provide feedback and expertise throughout the project. This project includes concrete plans to involve undergraduate students throughout its duration. The investigators, who have an established record of STEM outreach and education, will also leverage on exiting programs and resources at the Maryland Robotics Center to support this initiative and carry out outreach activities. In order to make student participation more productive and educational, the structure of the proposed system conforms to a hardware architecture adopted at UMD and many other schools for the teaching of undergraduate courses relevant to cyber-physical systems and robotics. This grant will support research on fundamental principles and design of robotic and cyber-physical systems. It will focus on algorithm design for control and coordination, network science, performance evaluation, microfabrication and system integration to address the following challenges: (i) Devise new locomotion and adhesion principles to support mobility within steel and concrete girder structures. (ii) Investigate the design of location estimators, omniscience and coordination algorithms that are provably optimal, subject to power and computational constraints. (iii) Methods to design and analyze the performance of energy-efficient communication protocols to support robot coordination and localization in the presence of the severe propagation barriers caused by metal and concrete structures of a bridge.
Off
University of Maryland College Park
-
National Science Foundation
Nuno Martins Submitted by Nuno Martins on December 22nd, 2015
This project represents a cross-disciplinary collaborative research effort on developing rigorous, closed-loop approaches for designing, simulating, and verifying medical devices. The work will open fundamental new approaches for radically accelerating the pace of medical device innovation, especially in the sphere of cardiac-device design. Specific attention will be devoted to developing advanced formal methods-based approaches for analyzing controller designs for safety and effectiveness; and devising methods for expediting regulatory and other third-party reviews of device designs. The project team includes members with research backgrounds in computer science, electrical engineering, biophysics, and cardiology; the PIs will use a coordinated approach that balances theoretical, experimental and practical concerns to yield results that are intended to transform the practice of device design while also facilitating the translation of new cardiac therapies into practice. The proposed effort will lead to significant advances in the state of the art for system verification and cardiac therapies based on the use of formal methods and closed-loop control and verification. The animating vision for the work is to enable the development of a true in silico design methodology for medical devices that can be used to speed the development of new devices and to provide greater assurance that their behaviors match designers' intentions, and to pass regulatory muster more quickly so that they can be used on patients needing their care. The scientific work being proposed will serve this vision by providing mathematically robust techniques for analyzing and verifying the behavior of medical devices, for modeling and simulating heart dynamics, and for conducting closed-loop verification of proposed therapeutic approaches. The acceleration in medical device innovation achievable as a result of the proposed research will also have long-term and sustained societal benefits, as better diagnostic and therapeutic technologies enter into the practice of medicine more quickly. It will also yield a collection of tools and techniques that will be applicable in the design of other types of devices. Finally, it will contribute to the development of human resources and the further inclusion of under-represented groups via its extensive education and outreach programs, including intensive workshop experiences for undergraduates.
Off
Carnegie-Mellon University
-
National Science Foundation
Submitted by Edmund Clarke on December 22nd, 2015
In the next few decades, autonomous vehicles will become an integral part of the traffic flow on highways. However, they will constitute only a small fraction of all vehicles on the road. This research develops technologies to employ autonomous vehicles already in the stream to improve traffic flow of human-controlled vehicles. The goal is to mitigate undesirable jamming, traffic waves, and to ultimately reduce the fuel consumption. Contemporary control of traffic flow, such as ramp metering and variable speed limits, is largely limited to local and highly aggregate approaches. This research represents a step towards global control of traffic using a few autonomous vehicles, and it provides the mathematical, computational, and engineering structure to address and employ these new connections. Even if autonomous vehicles can provide only a small percentage reduction in fuel consumption, this will have a tremendous economic and environmental impact due to the heavy dependence of the transportation system on non-renewable fuels. The project is highly collaborative and interdisciplinary, involving personnel from different disciplines in engineering and mathematics. It includes the training of PhD students and a postdoctoral researcher, and outreach activities to disseminate traffic research to the broader public. This project develops new models, computational methods, software tools, and engineering solutions to employ autonomous vehicles to detect and mitigate traffic events that adversely affect fuel consumption and congestion. The approach is to combine the data measured by autonomous vehicles in the traffic flow, as well as other traffic data, with appropriate macroscopic traffic models to detect and predict congestion trends and events. Based on this information, the loop is closed by carefully following prescribed velocity controllers that are demonstrated to reduce congestion. These controllers require detection and response times that are beyond the limit of a human's ability. The choice of the best control strategy is determined via optimization approaches applied to the multiscale traffic model and suitable fuel consumption estimation. The communication between the autonomous vehicles, combined with the computational and control tasks on each individual vehicle, require a cyber-physical approach to the problem. This research considers new types of traffic models (micro-macro models, network approaches for higher-order models), new control algorithms for traffic flow regulation, and new sensing and control paradigms that are enabled by a small number of controllable systems available in a flow.
Off
Rutgers University Camden
-
National Science Foundation
Submitted by Benedetto Piccoli on December 22nd, 2015
This project represents a cross-disciplinary collaborative research effort on developing rigorous, closed-loop approaches for designing, simulating, and verifying medical devices. The work will open fundamental new approaches for radically accelerating the pace of medical device innovation, especially in the sphere of cardiac-device design. Specific attention will be devoted to developing advanced formal methods-based approaches for analyzing controller designs for safety and effectiveness; and devising methods for expediting regulatory and other third-party reviews of device designs. The project team includes members with research backgrounds in computer science, electrical engineering, biophysics, and cardiology; the PIs will use a coordinated approach that balances theoretical, experimental and practical concerns to yield results that are intended to transform the practice of device design while also facilitating the translation of new cardiac therapies into practice. The proposed effort will lead to significant advances in the state of the art for system verification and cardiac therapies based on the use of formal methods and closed-loop control and verification. The animating vision for the work is to enable the development of a true in silico design methodology for medical devices that can be used to speed the development of new devices and to provide greater assurance that their behaviors match designers' intentions, and to pass regulatory muster more quickly so that they can be used on patients needing their care. The scientific work being proposed will serve this vision by providing mathematically robust techniques for analyzing and verifying the behavior of medical devices, for modeling and simulating heart dynamics, and for conducting closed-loop verification of proposed therapeutic approaches. The acceleration in medical device innovation achievable as a result of the proposed research will also have long-term and sustained societal benefits, as better diagnostic and therapeutic technologies enter into the practice of medicine more quickly. It will also yield a collection of tools and techniques that will be applicable in the design of other types of devices. Finally, it will contribute to the development of human resources and the further inclusion of under-represented groups via its extensive education and outreach programs, including intensive workshop experiences for undergraduates.
Off
Georgia Tech Research Corporation
-
National Science Foundation
Submitted by Flavio Fenton on December 22nd, 2015
This project represents a cross-disciplinary collaborative research effort on developing rigorous, closed-loop approaches for designing, simulating, and verifying medical devices. The work will open fundamental new approaches for radically accelerating the pace of medical device innovation, especially in the sphere of cardiac-device design. Specific attention will be devoted to developing advanced formal methods-based approaches for analyzing controller designs for safety and effectiveness; and devising methods for expediting regulatory and other third-party reviews of device designs. The project team includes members with research backgrounds in computer science, electrical engineering, biophysics, and cardiology; the PIs will use a coordinated approach that balances theoretical, experimental and practical concerns to yield results that are intended to transform the practice of device design while also facilitating the translation of new cardiac therapies into practice. The proposed effort will lead to significant advances in the state of the art for system verification and cardiac therapies based on the use of formal methods and closed-loop control and verification. The animating vision for the work is to enable the development of a true in silico design methodology for medical devices that can be used to speed the development of new devices and to provide greater assurance that their behaviors match designers' intentions, and to pass regulatory muster more quickly so that they can be used on patients needing their care. The scientific work being proposed will serve this vision by providing mathematically robust techniques for analyzing and verifying the behavior of medical devices, for modeling and simulating heart dynamics, and for conducting closed-loop verification of proposed therapeutic approaches. The acceleration in medical device innovation achievable as a result of the proposed research will also have long-term and sustained societal benefits, as better diagnostic and therapeutic technologies enter into the practice of medicine more quickly. It will also yield a collection of tools and techniques that will be applicable in the design of other types of devices. Finally, it will contribute to the development of human resources and the further inclusion of under-represented groups via its extensive education and outreach programs, including intensive workshop experiences for undergraduates.
Off
University of Pennsylvania
-
National Science Foundation
Sanjay Dixit
Rahul Mangharam Submitted by Rahul Mangharam on December 22nd, 2015
Securing critical networked cyber-physical systems (NCPSs) such as the power grid or transportation systems has emerged as a major national and global priority. The networked nature of such systems renders them vulnerable to a range of attacks both in cyber and physical domains as corroborated by recent threats such as the Stuxnet worm. Developing security mechanisms for such NCPSs significantly differs from traditional networked systems due to interdependence between cyber and physical subsystems (with attacks originating from either subsystem), possible cooperation between attackers or defenders, and the presence of human decision makers in the loop. The main goal of this research is to develop the necessary science and engineering tools for designing NCPS security solutions that are applicable to a broad range of application domains. This project will develop a multidisciplinary framework that weaves together principles from cybersecurity, control theory, networking and criminology. The framework will include novel security mechanisms for NCPSs founded on solid control-theoretic and related notions, analytical tools that allow incorporation of bounded human rationality in NCPS security, and experiments with real-world attack scenarios. A newly built cross-institutional NCPS simulator will be used to evaluate the proposed mechanisms in realistic environments. This research transcends specific cyber-physical systems domains and provides the necessary tools to building secure and trustworthy NCPSs. The broader impacts include a new infrastructure for NCPS research and education, training of students, new courses, and outreach events focused on under-represented student groups
Off
Virginia Polytechnic Institute and State University
-
National Science Foundation
Submitted by Walid Saad on December 22nd, 2015
Despite many advances in vehicle automation, much remains to be done: the best autonomous vehicle today still lags behind human drivers, and connected vehicle (V2V) and infrastructure (V2I) standards are only just emerging. In order for such cyber-physical systems to fully realize their potential, they must be capable of exploiting one of the richest and most complex abilities of humans, which we take for granted: seeing and understanding the visual world. If automated vehicles had this ability, they could drive more intelligently, and share information about road and environment conditions, events, and anomalies to improve situational awareness and safety for other automated vehicles as well as human drivers. That is the goal of this project, to achieve a synergy between computer vision, machine learning and cyber-physical systems that leads to a safer, cheaper and smarter transportation sector, and which has potential applications to other sectors including agriculture, food quality control and environment monitoring. To achieve this goal, this project brings together expertise in computer vision, sensing, embedded computing, machine learning, big data analytics and sensor networks to develop an integrated edge-cloud architecture for (1) "anytime scene understanding" to unify diverse scene understanding methods in computer vision, and (2) "cooperative scene understanding" that leverages vehicle-to-vehicle and vehicle-to-infrastructure protocols to coordinate with multiple systems, while (3) emphasizing how security and privacy should be managed at scale without impacting overall quality-of-service. This architecture can be used for autonomous driving and driver-assist systems, and can be embedded within infrastructure (digital signs, traffic lights) to avoid traffic congestion, reduce risk of pile-ups and improve situational awareness. Validation and transition of the research to practice are through integration within City of Pittsburgh public works department vehicles, Carnegie Mellon University NAVLAB autonomous vehicles, and across the smart road infrastructure corridor under development in Pittsburgh. The project also includes activities to foster development of a new cyber-physical systems workforce, though involvement of students in the research, co-taught multi-disciplinary courses, and co-organized workshops.
Off
Carnegie-Mellon University
-
National Science Foundation
Submitted by Srinivasa Narasimhan on December 22nd, 2015
Recent developments in nanotechnology and synthetic biology have enabled a new direction in biological engineering: synthesis of collective behaviors and spatio-temporal patterns in multi-cellular bacterial and mammalian systems. This will have a dramatic impact in such areas as amorphous computing, nano-fabrication, and, in particular, tissue engineering, where patterns can be used to differentiate stem cells into tissues and organs. While recent technologies such as tissue- and organoid on-a-chip have the potential to produce a paradigm shift in tissue engineering and drug development, the synthesis of user-specified, emergent behaviors in cell populations is a key step to unlock this potential and remains a challenging, unsolved problem. This project brings together synthetic biology and micron-scale mobile robotics to define the basis of a next-generation cyber-physical system (CPS) called biological CPS (bioCPS). Synthetic gene circuits for decision making and local communication among the cells are automatically synthesized using a Bio-Design Automation (BDA) workflow. A Robot Assistant for Communication, Sensing, and Control in Cellular Networks (RA), which is designed and built as part of this project, is used to generate desired patterns in networks of engineered cells. In RA, the engineered cells interact with a set of micro-robots that implement control, sensing, and long-range communication strategies needed to achieve the desired global behavior. The micro-robots include both living and non-living matter (engineered cells attached to inorganic substrates that can be controlled using externally applied fields). This technology is applied to test the formation of various patterns in living cells. The project has a rich education and outreach plan, which includes nationwide activities for CPS education of high-school students, lab tours and competitions for high-school and undergraduate students, workshops, seminars, and courses for graduate students, as well as specific initiatives for under-represented groups. Central to the project is the development of theory and computational tools that will significantly advance that state of the art in CPS at large. A novel, formal methods approach is proposed for synthesis of emergent, global behaviors in large collections of locally interacting agents. In particular, a new logic whose formulas can be efficiently learned from quad-tree representations of partitioned images is developed. The quantitative semantics of the logic maps the synthesis of local control and communication protocols to an optimization problem. The project contributes to the nascent area of temporal logic inference by developing a machine learning method to learn temporal logic classifiers from large amounts of data. Novel abstraction and verification techniques for stochastic dynamical systems are defined and used to verify the correctness of the gene circuits in the BDA workflow.
Off
University of Pennsylvania
-
National Science Foundation
Submitted by Vijay Kumar on December 22nd, 2015
Recent developments in nanotechnology and synthetic biology have enabled a new direction in biological engineering: synthesis of collective behaviors and spatio-temporal patterns in multi-cellular bacterial and mammalian systems. This will have a dramatic impact in such areas as amorphous computing, nano-fabrication, and, in particular, tissue engineering, where patterns can be used to differentiate stem cells into tissues and organs. While recent technologies such as tissue- and organoid on-a-chip have the potential to produce a paradigm shift in tissue engineering and drug development, the synthesis of user-specified, emergent behaviors in cell populations is a key step to unlock this potential and remains a challenging, unsolved problem. This project brings together synthetic biology and micron-scale mobile robotics to define the basis of a next-generation cyber-physical system (CPS) called biological CPS (bioCPS). Synthetic gene circuits for decision making and local communication among the cells are automatically synthesized using a Bio-Design Automation (BDA) workflow. A Robot Assistant for Communication, Sensing, and Control in Cellular Networks (RA), which is designed and built as part of this project, is used to generate desired patterns in networks of engineered cells. In RA, the engineered cells interact with a set of micro-robots that implement control, sensing, and long-range communication strategies needed to achieve the desired global behavior. The micro-robots include both living and non-living matter (engineered cells attached to inorganic substrates that can be controlled using externally applied fields). This technology is applied to test the formation of various patterns in living cells. The project has a rich education and outreach plan, which includes nationwide activities for CPS education of high-school students, lab tours and competitions for high-school and undergraduate students, workshops, seminars, and courses for graduate students, as well as specific initiatives for under-represented groups. Central to the project is the development of theory and computational tools that will significantly advance that state of the art in CPS at large. A novel, formal methods approach is proposed for synthesis of emergent, global behaviors in large collections of locally interacting agents. In particular, a new logic whose formulas can be efficiently learned from quad-tree representations of partitioned images is developed. The quantitative semantics of the logic maps the synthesis of local control and communication protocols to an optimization problem. The project contributes to the nascent area of temporal logic inference by developing a machine learning method to learn temporal logic classifiers from large amounts of data. Novel abstraction and verification techniques for stochastic dynamical systems are defined and used to verify the correctness of the gene circuits in the BDA workflow.
Off
Trustees of Boston University
-
National Science Foundation
Calin Belta Submitted by Calin Belta on December 22nd, 2015
This project represents a cross-disciplinary collaborative research effort on developing rigorous, closed-loop approaches for designing, simulating, and verifying medical devices. The work will open fundamental new approaches for radically accelerating the pace of medical device innovation, especially in the sphere of cardiac-device design. Specific attention will be devoted to developing advanced formal methods-based approaches for analyzing controller designs for safety and effectiveness; and devising methods for expediting regulatory and other third-party reviews of device designs. The project team includes members with research backgrounds in computer science, electrical engineering, biophysics, and cardiology; the PIs will use a coordinated approach that balances theoretical, experimental and practical concerns to yield results that are intended to transform the practice of device design while also facilitating the translation of new cardiac therapies into practice. The proposed effort will lead to significant advances in the state of the art for system verification and cardiac therapies based on the use of formal methods and closed-loop control and verification. The animating vision for the work is to enable the development of a true in silico design methodology for medical devices that can be used to speed the development of new devices and to provide greater assurance that their behaviors match designers' intentions, and to pass regulatory muster more quickly so that they can be used on patients needing their care. The scientific work being proposed will serve this vision by providing mathematically robust techniques for analyzing and verifying the behavior of medical devices, for modeling and simulating heart dynamics, and for conducting closed-loop verification of proposed therapeutic approaches. The acceleration in medical device innovation achievable as a result of the proposed research will also have long-term and sustained societal benefits, as better diagnostic and therapeutic technologies enter into the practice of medicine more quickly. It will also yield a collection of tools and techniques that will be applicable in the design of other types of devices. Finally, it will contribute to the development of human resources and the further inclusion of under-represented groups via its extensive education and outreach programs, including intensive workshop experiences for undergraduates.
Off
Fraunhofer Center for Experimental Software Engineering
-
National Science Foundation
Dharmalingam Ganesan
Submitted by Arnab Ray on December 22nd, 2015
Subscribe to Education