Systems that determine, based on the principles of science, engineering and measurement theory, whether an artifact satisfies accepted, well-defined and measurable criteria.
Event
ACVI16
Workshop on Architecture Centric Virtual Integration at WICSA and CompArch 2016 | http://www.aadl.info/aadl/acvi/acvi2016/ Important dates
Submitted by Julien Delange on January 7th, 2016
The objective of this project is to research tools to manage uncertainty in the design and certification process of safety-critical aviation systems. The research focuses on three innovative ideas to support this objective. First, probabilistic techniques will be introduced to specify system-level requirements and bound the performance of dynamical components. These will reduce the design costs associated with complex aviation systems consisting of tightly integrated components produced by many independent engineering organizations. Second, a framework will be created for developing software components that use probabilistic execution to model and manage the risk of software failure. These techniques will make software more robust, lower the cost of validating code changes, and allow software quality to be integrated smoothly into overall system-level analysis. Third, techniques from Extreme Value Theory will be applied to develop adaptive verification and validation procedures. This will enable early introduction of new and advanced aviation systems. These systems will initially have restricted capabilities, but these restrictions will be gradually relaxed as justified by continual logging of data from in-service products. The three main research aims will lead to a significant reduction in the costs and time required for fielding new aviation systems. This will enable, for example, the safe and rapid implementation of next generation air traffic control systems that have the potential of tripling airspace capacity with no reduction in safety. The proposed methods are also applicable to other complex systems including smart power grids and automated highways. Integrated into the research is an education plan for developing a highly skilled workforce capable of designing safety critical systems. This plan centers around two main activities: (a) creation of undergraduate labs focusing on safety-critical systems, and (b) integration of safety-critical concepts into a national robotic snowplow competition. These activities will provide inspirational, real-world applications to motivate student learning.
Off
University of Minnesota-Twin Cities
-
National Science Foundation
Submitted by Peter Seiler on December 18th, 2015
This project aims to achieve key technology, infrastructure, and regulatory science advances for next generation medical systems based on the concept of medical application platforms (MAPs). A MAP is a safety/security-critical real-time computing platform for: (a) integrating heterogeneous devices and medical IT systems, (b) hosting application programs ("apps") that provide medical utility through the ability to both acquire information and update/control integrated devices, IT systems, and displays. The project will develop formal architectural and behavioral specification languages for defining MAPs, with a focus on techniques that enable compositional reasoning about MAP component interoperability and safety. These formal languages will include an extensible property language to enable the specification of real-time, quality-of-service, and attributes specific to medical contexts that can be leveraged by code generation, testing, and verification tools. The project will work closely with a synergistic team of clinicians, device industry partners, regulators, and medical device interoperability and safety standard organizations to develop an open source MAP innovation platform to enable key stakeholders within the nation's health care ecosphere to identify, prototype, and evaluate solutions to key technology and regulatory challenges that must be overcome to develop a commodity market of regulated MAP components. Because MAPs provide pre-built certified infrastructure and building blocks for rapidly developing multi-device medical applications, this research has the potential to usher in a new paradigm of medical system that significantly increases the pace of innovation, lowers development costs, enables new functionality by aggregating multiple devices into a system of systems, and achieves greater system safety.
Off
University of Pennsylvania
-
National Science Foundation
Insup Lee Submitted by Insup Lee on December 18th, 2015
The project aims at making cities "smarter" by engineering processes such as traffic control, efficient parking services, and new urban activities such as recharging electric vehicles. To that end, the research will study the components needed to establish a Cyber-Physical Infrastructure for urban environments and address fundamental problems that involve data collection, resource allocation, real-time decision making, safety, and security. Accordingly, the research is organized along two main directions: (i) Sensing and data acquisition using a new mobile sensor network paradigm designed for urban environments; and (ii) Decision Support for the "Smart City" relying on formal verification and certification methods coupled with innovative dynamic optimization techniques used for decision making and resource allocation. The work will bring together and build upon methodological advances in optimization under uncertainty, computer simulation, discrete event and hybrid systems, control and games, system security, and formal verification and safety. Target applications include: a "Smart Parking" system where parking spaces are optimally assigned and reserved, and vehicular traffic regulation. The research has the potential of revolutionizing the way cities are viewed: from a passive living and working environment to a highly dynamic one with new ways to deal with transportation, energy, and safety. Teaming up with stakeholders in the Boston Back Bay neighborhood, the City of Boston, and private industry, the research team expects to establish new collaborative models between universities and urban groups for cutting-edge research embedded in the deployment of an exciting technological, economic, and sociological development.
Off
University of Connecticut
-
National Science Foundation
Submitted by Robert Gao on December 18th, 2015
Event
RTAS 2016
22nd IEEE Rea​l-Time and Embedded Technology and Applications Symposium (RTAS 2016) will be held in Vienna, Austria, as part of the Cyber-Physical Systems Week (CPSWeek) in April 2016. The conference includes a Work in Progress (WiP) and Demo session intended for presentation of recent and on-going work, as well as for demonstrations of tools and technology that have the potential to be used in the design and development of real-time systems. In keeping with the spirit of the main symposium, we invite submissions of WiP papers and demos with an emphasis on system and application aspects.
Submitted by Anonymous on December 8th, 2015
The objective of this project is to research tools to manage uncertainty in the design and certification process of safety-critical aviation systems. The research focuses on three innovative ideas to support this objective. First, probabilistic techniques will be introduced to specify system-level requirements and bound the performance of dynamical components. These will reduce the design costs associated with complex aviation systems consisting of tightly integrated components produced by many independent engineering organizations. Second, a framework will be created for developing software components that use probabilistic execution to model and manage the risk of software failure. These techniques will make software more robust, lower the cost of validating code changes, and allow software quality to be integrated smoothly into overall system-level analysis. Third, techniques from Extreme Value Theory will be applied to develop adaptive verification and validation procedures. This will enable early introduction of new and advanced aviation systems. These systems will initially have restricted capabilities, but these restrictions will be gradually relaxed as justified by continual logging of data from in-service products. The three main research aims will lead to a significant reduction in the costs and time required for fielding new aviation systems. This will enable, for example, the safe and rapid implementation of next generation air traffic control systems that have the potential of tripling airspace capacity with no reduction in safety. The proposed methods are also applicable to other complex systems including smart power grids and automated highways. Integrated into the research is an education plan for developing a highly skilled workforce capable of designing safety critical systems. This plan centers around two main activities: (a) creation of undergraduate labs focusing on safety-critical systems, and (b) integration of safety-critical concepts into a national robotic snowplow competition. These activities will provide inspirational, real-world applications to motivate student learning.
Off
Tufts University
-
National Science Foundation
Jason Rife
Submitted by Samuel Guyer on August 27th, 2015
This project aims to achieve key technology, infrastructure, and regulatory science advances for next generation medical systems based on the concept of medical application platforms (MAPs). A MAP is a safety/security-critical real-time computing platform for: (a) integrating heterogeneous devices and medical IT systems, (b) hosting application programs ("apps") that provide medical utility through the ability to both acquire information and update/control integrated devices, IT systems, and displays. The project will develop formal architectural and behavioral specification languages for defining MAPs, with a focus on techniques that enable compositional reasoning about MAP component interoperability and safety. These formal languages will include an extensible property language to enable the specification of real-time, quality-of-service, and attributes specific to medical contexts that can be leveraged by code generation, testing, and verification tools. The project will work closely with a synergistic team of clinicians, device industry partners, regulators, and medical device interoperability and safety standard organizations to develop an open source MAP innovation platform to enable key stakeholders within the nation's health care ecosphere to identify, prototype, and evaluate solutions to key technology and regulatory challenges that must be overcome to develop a commodity market of regulated MAP components. Because MAPs provide pre-built certified infrastructure and building blocks for rapidly developing multi-device medical applications, this research has the potential to usher in a new paradigm of medical system that significantly increases the pace of innovation, lowers development costs, enables new functionality by aggregating multiple devices into a system of systems, and achieves greater system safety.
Off
Kansas State University
-
National Science Foundation
Venkatesh Ranganath
John Hatcliff
John Hatcliff Submitted by John Hatcliff on August 27th, 2015
Event
CRTS 2015
8th International Workshop on Compositional Theory and Technology for Real-Time Embedded Systems (CRTS 2015) Collocated with RTSS 2015. San Antonio TX. USA
Submitted by Anonymous on August 25th, 2015
Event
IWCPS’15
2nd International Workshop on Cyber-Physical Systems (IWCPS’15) E-mail: iwcps2015@fedcsis.org We would like to cordially invite you to consider contributing a paper to IWCPS 2015 - held as a part of the Federated Conference on Computer Science and Information Systems (FedCSIS 2015).
Submitted by Anonymous on March 18th, 2015
Event
VECoS 2015
9th International Workshop on Verification and Evaluation of Computer and Communication Systems (VECoS 2015) Important dates Paper submission: May 15, 2015 Decision notification: July 12, 2015 Camera-ready submission: July 23, 2015 Workshop: September 10-11, 2015 Aims and scope
Submitted by Anonymous on March 10th, 2015
Subscribe to Certification