Autonomous sensors that monitor and control physical or environmental conditions.
Situational Awareness provides a user centric approach to security and privacy. The human factor is often recognised as the weakest link in security, therefore situational perception and risk awareness play a leading role in the adoption and implementation of security mechanisms. In this study we assess the understanding of security and privacy of users in possession of wearable devices. The findings demonstrate privacy complacency, as the majority of users trust the application and the wearable device manufacturer.
xavier bellekens Submitted by xavier bellekens on November 17th, 2016
Event
ANT 2017
The 8th International Conference on Ambient Systems, Networks and Technologies (ANT-2017) in conjunction with the 7th International Conference on Sustainable Energy Information Technology (SEIT 2017) The 8th International Conference on Ambient Systems, Networks and Technologies (ANT-2017) is a leading international conference for researchers and industry practitioners to share their new ideas, original research results and practical development experiences from all Ambient Systems, Networks and Technologies related areas.
Submitted by Anonymous on October 17th, 2016
This project aims to design algorithmic techniques to perform activity discovery, recognition, and prediction from sensor data. These techniques will form the foundation for the science of Activity- Prediction Cyber-Physical Systems, including potential improvement in the responsiveness and adaptiveness of the systems. The outcome of this work is also anticipated to have important implications in the specific application areas of health care and sustainability, two priority areas of societal importance. The first application will allow for health interventions to be provided that adapt to an individual's daily routine and operate in that person's everyday environment. The second application will offer concrete tools for building automation that improve sustainability without disrupting an individual's current or upcoming activities. The project investigators will leverage existing training programs to involve students from underrepresented groups in this research. Bi-annual tours and a museum exhibit will reach K-12 teachers, students and visitors, and ongoing commercialization efforts will ensure that the designed technologies are made available for the public to use. Deploying activity-predictive cyber-physical systems "in the wild" requires a number of robust computational components for activity learning, knowledge transfer, and human-in- the-loop computing that are introduced as part of this project. These components then create cyber physical systems that funnel information from a sensed environment (the physical setting as well as humans in the environment), to activity models in the cloud, to mobile device interfaces, to the smart grid, and then back to the environment. The proposed research centers on defining the science of activity-predictive cyber-physical systems, organized around the following thrusts: (1) the design of scalable and generalizable algorithms for activity discovery, recognition, and prediction; (2) the design of transfer learning methods to increase the the ability to generalize activity-predictive cyber-physical systems; (3) the design of human-in-the-loop computing methods to increase the sensitivity of activity-predictive cyber-physical systems; (4) the introduction of evaluation metrics for activity-predictive cyber-physical systems; and (5) transition of activity-predictive cyber-physical systems to practical applications including health monitoring/intervention and smart/sustainable cities.
Off
Washington State University
-
National Science Foundation
Maureen Schmitter-Edgecombe
Janardhan Rao Doppa
Submitted by Diane Cook on September 24th, 2016
The timely and accurate in-service identification of faults in mechanical structures, such as airplanes, can play a vitally important role in avoiding catastrophes. One major challenge, however, is that the sensing system relies on high frequency signals, the coordination of which is difficult to achieve throughout a large structure. To tackle this fundamental issue, the research team will take advantage of 3D printing technology to fabricate integrated sensor-structure components. Specifically, the team plans to innovate a novel printing scheme that can embed piezoelectric transducers (namely, sensor/actuator coupled elements) into layered composites. As the transducers are densely distributed throughout the entire structure, they function like a nerve system embedded into the structure. Such a sensor nerve system, when combined with new control and command systems and advanced data and signal processing capability, can fully unleash the latest computing power to pinpoint the fault location. The new framework of utilizing emerging additive manufacturing technology to produce a structural system with integrated, densely distributed active sensing elements will potentially lead to paradigm-shifting progress in structural self-diagnosis. This advancement may allow the acquisition of high-quality, active interrogation data throughout the entire structure, which can then be used to facilitate highly accurate and robust decision-making. It will lead to intellectual contributions including: 1) development of a new sensing modality with mechanical-electrical dual-field adaptivity, that yields rich and high-quality data throughout the structure; 2) design of an additive manufacturing scheme that inserts piezoelectric micro transducer arrays throughout the structure to enable active interrogation; and 3) formulation of new data analytics and inverse analysis that can accurately identify the fault location/severity and guide the fine-tuning of the sensor system.
Off
Texas A&M Engineering Experiment Station
-
National Science Foundation
Submitted by Yu Ding on September 24th, 2016
Recent progress in autonomous and connected vehicle technologies coupled with Federal and State initiatives to facilitate their widespread use provide significant opportunities in enhancing mobility and safety for highway transportation. This project develops signalized intersection control strategies and other enabling sensor mechanisms for jointly optimizing vehicle trajectories and signal control by taking advantage of existing advanced technologies (connected vehicles and vehicle to infrastructure communications, sensors, autonomous vehicle technologies, etc.) Traffic signal control is a critical component of the existing transportation infrastructure and it has a significant impact on transportation system efficiency, as well as energy consumption and environmental impacts. In addition to advanced vehicle technologies, the strategies developed consider the presence of conventional vehicles in the traffic stream to facilitate transition to these new strategies in a mixed vehicle environment. The project also develops and uses simulation tools to evaluate these strategies as well as to provide tools that can be used in practice to consider the impacts of automated and connected vehicles in arterial networks. The project involves two industry partners (ISS and Econolite) to help facilitate new product development in anticipation of increased market penetration of connected and autonomous vehicles. The approach will be tested through simulation at University of Florida, through field tests at the Turner Fairbank Highway Research Center (TFHRC) and through the control algorithms that also will be deployed and tested in the field. The project will support multiple graduate students and will support creation of on-line classes. The project is at the intersection of several different disciplines (optimization, sensors, automated vehicles, transportation engineering) required to produce a real-time engineered system that depends on the seamless integration of several components: sensor functionality, connected and autonomous vehicle information communication, signal control optimization strategy, missing and erroneous information, etc. The project develops and implements optimization processes and strategies considering a seamless fusion of multiple data sources, as well as a mixed vehicle stream (autonomous, connected, and conventional vehicles) under real-world conditions of uncertain and missing data. Since trajectories for connected and conventional vehicles cannot be optimized or guaranteed, the project examines the impacts of the presence of automated vehicles on the following vehicles in a queue. The project also integrates advanced sensing technology needed to control a mixed vehicle stream, as well as address malfunctioning communications in connected and autonomous vehicles.
Off
University of Florida
-
National Science Foundation
Carl Crane
Submitted by Lily-Ageliki Elefteriadou on September 24th, 2016
Today's automobiles are increasingly autonomous. The latest Mercedes S-class sedan applies corrective action when its driver strays out of lane or tailgates too closely. Semi-autonomy will soon yield to full autonomy. Nissan has promised a line of self-driving cars by 2020. Maritime craft are likewise moving from rudimentary autopilots to full autonomy, and autonomous aerial vehicles will doubtless play a significant role in the future economy. Current versions of these vehicles are cocooned in an array of sensors, but neither the sensors nor the timing, navigation, and collision avoidance algorithms they feed have been designed for security against malicious attacks. Radar and acoustic sensors transmit predictable, uncoded signals; vehicle-to-vehicle communication protocols are either unauthenticated or critically dependent on insecure civil GPS signals (or both); and vehicle state estimators are designed for robustness but not security. These vulnerabilities are not merely conceptual: GPS spoofing attacks have been demonstrated against a drone and an ocean vessel, causing the drone to crash and the vessel to veer off course; likewise, it appears possible to cause road accidents by fooling a car's radar sensor into thinking a crash is imminent, thus triggering automatic braking. This proposal seeks funding to fix these vulnerabilities by developing sensors and high-level decision-making algorithms that are hardened against such so-called field attacks. The goal of secure control systems is to survive and operate safely despite sensor measurements or control commands being compromised. This proposal focuses on an emergent category of cyber-physical attack that has seen little scrutiny in the secure control literature. Like cyber attacks, these attacks are hard to detect and can be executed from a distance, but unlike cyber attacks, they are effective even against control systems whose software, data, and communications networks are secure, and so can be considered a more menacing long-term threat. These are attacks on the physical fields such as electromagnetic, magnetic, acoustic, etc. measured by system sensors. As specialized sensor attacks, field attacks seek to compromise a system's perception of reality non-invasively from without, not from within. We emphasize field attacks against navigation, collision avoidance, and synchronization sensors, as these are of special importance to the rise of autonomous vehicles and the smart grid. This proposal's goal is to develop a coherent analytical foundation for secure perception in the presence of field attacks and to develop a suite of algorithms and tools to detect such attacks. A key insight behind this proposal's approach is that the physics of field attacks impose fundamental difficulties on the attacker that can be exploited and magnified to enable attack detection. This work will progressively build security into navigation, collision avoidance, and timing perception from the physical sensory layer to the top-level state estimation algorithms. The outcome of this work will be smarter, more skeptical sensor systems for autonomous vehicles and other autonomous systems.
Off
University of Texas at Austin
-
National Science Foundation
Submitted by Todd Humphries on September 23rd, 2016
This project develops advanced cyber-physical sensing, modeling, control, and optimization methods to significantly improve the efficiency of algal biomass production using membrane bioreactor technologies for waste water processing and algal biofuel. Currently, many wastewater treatment plants are discharging treated wastewater containing significant amounts of nutrients, such as nitrogen, ammonium, and phosphate ions, directly into the water system, posing significant threats to the environment. Large-scale algae production represents one of the most promising and attractive solutions for simultaneous wastewater treatment and biofuel production. The critical bottleneck is low algae productivity and high biofuel production cost. The previous work of this research team has successfully developed an algae membrane bioreactor (A-MBR) technology for high-density algae production which doubles the productivity in an indoor bench-scale environment. The goal of this project is to explore advanced cyber-physical sensing, modeling, control, and optimization methods and co-design of the A-MBR system to bring the new algae production technology into the field. The specific goal is to increase the algal biomass productivity in current practice by three times in the field environment while minimizing land, capital, and operating costs. Specifically, the project will (1) adapt the A-MBR design to address unique new challenges for algae cultivation in field environments, (2) develop a multi-modality sensor network for real-time in-situ monitoring of key environmental variables for algae growth, (3) develop data-driven knowledge-based kinetic models for algae growth and automated methods for model calibration and verification using the real-time sensor network data, and (4) deploy the proposed CPS system and technologies in the field for performance evaluations and demonstrate its potentials. This project will demonstrate a new pathway toward green and sustainable algae cultivation and biofuel production using wastewater, addressing two important challenging issues faced by our nation and the world: wastewater treatment and renewable energy. It will provide unique and exciting opportunities for mentoring graduate students with interdisciplinary training opportunities, involving K-12 students, women and minority students. With web-based access and control, this project will convert the bench-scale and pilot scale algae cultivation systems into an exciting interactive online learning platform to educate undergraduate and high-school students about cyber-physical system design, process control, and renewable biofuel production.
Off
University of Maryland College Park
-
National Science Foundation
Submitted by Piya Pal on September 23rd, 2016
In the recent past the term "Smart Cities" was introduced to mainly characterize the integration into our daily lives of the latest advancements in technology and information. Although there is no standardized definition of Smart Cities, what is certain is that it touches upon many different domains that affect a city's physical and social capital. Smart cities are intertwined with traffic control systems that use advanced infrastructures to mitigate congestion and improve safety. Traffic control management strategies have been largely focused on improving vehicular traffic flows on highways and freeways but arterials have not been used properly and pedestrians are mostly ignored. This work proposes to introduce a novel hierarchical adaptive controls paradigm to urban network traffic control that will adapt to changing movement and interaction behaviors from multiple entities (vehicles, public transport modes, bicyclists, and pedestrians). Such a paradigm will leverage several key ideas of cyber-physical systems to rapidly and automatically pin-point and respond to urban arterial congestion thereby improving travel time and reliability for all modes. Safety will also be improved since advanced warnings actuated by the proposed cyber-physical system will alert drivers to congested areas thereby allowing them to avoid these areas, or to adapt their driving habits. Such findings have a tangible effect on the well-being, productivity, and health of the traveling public. The primary goal is to create a Cyber-Control Network (CCN) that will integrate seamlessly across heterogeneous sensory data in order to create effective control schemes and actuation sequences. Accordingly, this project introduces a Cyber-Physical architecture that will then integrate: (i) a sub-network of heterogeneous sensors, (ii) a decision control substrate, and (iii) a sub-actuation network that carries out the decisions of the control substrate (traffic control signals, changeable message signs). This is a major departure from more prevalent centralized Supervisory Control And Data Acquisition (SCADA), in that the CCN will use a hierarchical architecture that will dynamically instantiate the sub-networks together to respond rapidly to changing cyber-physical interactions. Such an approach allows the cyber-physical system to adapt in real-time to salient traffic events occurring at different scales of time and space. The work will consequently introduce a ControlWare module to realize such dynamic sub-network reconfiguration and provide decision signal outputs to the actuation network. A secondary, complementary goal is to develop a heterogeneous sensor network to reliably and accurately monitor and identify salient arterial traffic events. Other impacts of the project include the integration of the activities with practitioners (e.g., traffic engineers), annual workshops/tutorials, and outreach to K-12 institutions.
Off
University of Maryland College Park
-
National Science Foundation
Brian Scott
John Hourdos
Stephen Guy
Mihailo Jovanovic
Submitted by Nikolaos Papanikolopoulos on September 23rd, 2016
Laboratory-on-a-chip (LoC) technology is poised to improve global health through development of low-cost, automated point-of-care testing devices. In countries with few healthcare resources, clinics often have drugs to treat an illness, but lack diagnostic tools to identify patients who need them. To enable low-cost diagnostics with minimal laboratory support, this project will investigate domain-specific LoC programming language and compiler design in conjunction with device fabrication technologies (process flows, sensor integration, etc.). The project will culminate by building a working LoC that controls fluid motion through electronic signals supplied by a host PC; a forensic toxicology immunoassay will be programmed in software and executed on the device. This experiment will demonstrate benefits of programmable LoC technology including miniaturization (reduced reagent consumption), automation (reduced costs and uncertainties associated with human interaction), and general-purpose software-programmability (the device can execute a wide variety of biochemical reactions, all specified in software). Information necessary to reproduce the device, along with all software artifacts developed through this research effort, will be publicly disseminated. This will promote widespread usage of software-programmable LoC technology among researchers in the biological sciences, along with public and industrial sectors including healthcare and public health, biotechnology, water supply management, environmental toxicity monitoring, and many others. This project designs and implements a software-programmable cyber-physical laboratory-on-a-chip (LoC) that can execute a wide variety of biological protocols. By integrating sensors during fabrication, the LoC obtains the capability to send feedback in real-time to the PC controller, which can then make intelligent decisions regarding which biological operations to execute next. To bring this innovative and transformative platform to fruition, the project tackles several formidable research challenges: (1) cyber-physical LoC programming models and compiler design; (2) LoC fabrication, including process flows and cyber-physical sensor integration; and (3) LoC applications that rely on cyber-physical sensory feedback and real-time decision-making. By constructing a working prototype LoC, and programming a representative feedback-driven forensic toxicology immunoassay, the project demonstrates that the proposed system can automatically execute biochemical reactions that require a closed feedback loop. Expected broader impacts of the proposed work include reduced cost and increased reliability of clinical diagnostics, engagement with U.S. companies that use LoC technology, training of graduate and undergraduate students, increased engagement and retention efforts targeting women and underrepresented minorities, student-facilitated peer-instruction at UC Riverside, a summer residential program for underrepresented minority high-school students at the University of Tennessee, collaborations with researchers at the Oak Ridge National Laboratory, and creation, presentation, and dissemination of tutorial materials to promote the adoption and use of software-programmable LoCs among the wider scientific community.
Off
University of Tennessee - Knoxville
-
National Science Foundation
Submitted by Philip Rack on September 23rd, 2016
Parking can take up a significant amount of the trip costs (time and money) in urban travel. As such, it can considerably influence travelers' choices of modes, locations, and time of travel. The advent of smart sensors, wireless communications, social media and big data analytics offers a unique opportunity to tap parking's influence on travel to make the transportation system more efficient, cleaner, and more resilient. A cyber-physical social system for parking is proposed to realize parking's potential in achieving the above goals. This cyber-physical system consists of smart parking sensors, a parking and traffic data repository, parking management systems, and dynamic traffic flow control. If successful, the results of the investigation will create a new paradigm for managing parking to reduce traffic congestion, emissions and fuel consumption and to enhance system resilience. These results will be disseminated broadly through publications, workshops and seminars. The research will provide interdisciplinary training to both graduate and undergraduate students. The results of this research also fills a void in our graduate transportation curriculum in which parking management gets little coverage. The investigators will organize an online short training course in Coursera and National Highway Institute to bring results to a broader audience. The investigators will also collaborate with Carnegie Museum of Natural History to develop an online digital map and related educational programs, which will be presented in the museum galleries during public events. Technically, new theories, algorithms and systems for efficient management of transportation infrastructure through parking will be developed in this research, leveraging cutting-edge sensing technology, communication technology, big data analytics and feedback control. The research probes massive individualized and infrastructure based traffic and parking data to gain a deeper understanding of travel and parking behavior, and develops a novel reservoir-based network flow model that lays the foundation for modeling the complex interactions between parking and traffic flow in large-scale transportation networks. The theory will be investigated at different levels of granularity to reveal how parking information and pricing mechanisms affect network flow in a competitive market of private and public parking. In addition, this research proposes closed-loop control mechanisms to enhance mobility and sustainability of urban networks. Prices, access and information of publicly owned on-street and off-street parking are dynamically controlled to: a) change day-to-day behavior of all commuters through day-to-day travel experience and/or online information systems; b) change travel behavior of a fraction of adaptive travelers on the fly who are aware of time-of-day parking information and comply to the recommendations; and c) influence the market prices of privately owned parking areas through a competitive parking market.
Off
Stanford University
-
National Science Foundation
Submitted by Ram Rajagopal on September 22nd, 2016
Subscribe to Wireless Sensing and Actuation