Smart grid includes two interdependent infrastructures: power transmission and distribution network, and the supporting telecommunications network. Complex interactions among these infrastructures lead to new pathways for attack and failure propagation that are currently not well understood. This innovative project takes a holistic multilevel approach to understand and characterize the interdependencies between these two infrastructures, and devise mechanisms to enhance their robustness. Specifically, the project has four goals. The first goal is to understand the standardized smart grid communications protocols in depth and examine mechanisms to harden them. This is essential since the current protocols are notoriously easy to attack. The second goal is to ensure robustness in state estimation techniques since they form the basis for much of the analysis of smart grid. In particular, the project shall exploit a steganography-based approach to detect bad data and compromised devices. The third goal is to explore trust-based attack detection strategies that combine the secure state estimation with power flow models and software attestation to detect and isolate compromised components. The final goal is to study reconfiguration strategies that combine light-weight prediction models, stochastic decision processes, intentional islanding, and game theory techniques to mitigate the spreading of failures and the loss of load. A unique aspect of smart grid security that will be studied in this project is the critical importance of timeliness, and thus a tradeoff between effectiveness of the mechanisms and the overhead introduced. The project is expected to provide practical techniques for making the smart grid more robust against failures and attacks, and enable it to recover from large scale failures with less loss of capacity. The project will also train students in the multidisciplinary areas of power systems operation and design, networking protocols, and cyber-physical security.
Abstract
This project develops advanced cyber-physical sensing, modeling, control, and optimization methods to significantly improve the efficiency of algal biomass production using membrane bioreactor technologies for waste water processing and algal biofuel. Currently, many wastewater treatment plants are discharging treated wastewater containing significant amounts of nutrients, such as nitrogen, ammonium, and phosphate ions, directly into the water system, posing significant threats to the environment. Large-scale algae production represents one of the most promising and attractive solutions for simultaneous wastewater treatment and biofuel production. The critical bottleneck is low algae productivity and high biofuel production cost.
The previous work of this research team has successfully developed an algae membrane bioreactor (A-MBR) technology for high-density algae production which doubles the productivity in an indoor bench-scale environment. The goal of this project is to explore advanced cyber-physical sensing, modeling, control, and optimization methods and co-design of the A-MBR system to bring the new algae production technology into the field. The specific goal is to increase the algal biomass productivity in current practice by three times in the field environment while minimizing land, capital, and operating costs. Specifically, the project will (1) adapt the A-MBR design to address unique new challenges for algae cultivation in field environments, (2) develop a multi-modality sensor network for real-time in-situ monitoring of key environmental variables for algae growth, (3) develop data-driven knowledge-based kinetic models for algae growth and automated methods for model calibration and verification using the real-time sensor network data, and (4) deploy the proposed CPS system and technologies in the field for performance evaluations and demonstrate its potentials.
This project will demonstrate a new pathway toward green and sustainable algae cultivation and biofuel production using wastewater, addressing two important challenging issues faced by our nation and the world: wastewater treatment and renewable energy. It will provide unique and exciting opportunities for mentoring graduate students with interdisciplinary training opportunities, involving K-12 students, women and minority students. With web-based access and control, this project will convert the bench-scale and pilot scale algae cultivation systems into an exciting interactive online learning platform to educate undergraduate and high-school students about cyber-physical system design, process control, and renewable biofuel production.
Performance Period: 09/15/2015 - 08/31/2019
Institution: University of Missouri-Columbia
Sponsor: National Science Foundation
Award Number: 1544794
Abstract
Infrastructure networks are the foundation of the modern world. Their continued reliable and efficient function without exhausting finite natural resources is critical to the security, continued growth and technological advancement of the United States. Currently these systems are in a state of rapid flux due to a collision of trends such as growing populations, expanding integration of information technology, and increasing motivation to adopt sustainable practices. These trends beget both exciting potential benefits and dangerous challenges. Added sensing, communication, and computational capabilities hold the promise of increased reliability, efficiency and sustainability from "smart" infrastructure systems. At the same time, new technologies such as renewable energy resources in power systems, autonomous vehicles, and software defined communication networks, are testing the limits of current operational and market policies. The rapidly changing suite of system components can cause new, unforeseen interactions that can lead to instability, performance deterioration, or catastrophic failures. Achieving the full benefits of these systems will require a shift from the existing focus on approaches that analyze each aspect of interest in isolation, to a more holistic view that encompasses all of the relevant factors such as stability, robustness, performance and efficiency, and takes into account the presence of human participants.
This project provides a research roadmap to construct analysis, design and control tools that ensure the seamless integration of computational algorithms, physical components and human interactions in next generation infrastructure systems. Although there has been a great deal of research on stability questions in large scale distributed systems, there has been little effort directed toward questions of performance, robustness and efficiency in these systems, especially those with heterogeneous components and human participants. This research employs coupled oscillator systems as a common modeling framework to (i) characterize stability and performance of infrastructure systems, and (ii) develop distributed controllers that guarantee performance, efficiency and robustness by isolating disturbances and optimizing performance objectives. Practical solutions require that the theory be tightly integrated with the economic mechanisms necessary to incentivize users to enhance system stability, efficiency and reliability; therefore the work will also include the design of economic controls. In order to ground the mathematical foundations, theory and algorithms described above, the results will be applied to three target infrastructure networks where coupled oscillator models have played a foundational role in design and control: power, communication, and transportation systems. This approach allows the development of cross-cutting, fundamental principles that can be applied across problem specific boundaries and ensures that the research makes an impact on these specific infrastructure networks. This project will also incorporate concepts into existing undergraduate and graduate courses.
Performance Period: 09/01/2015 - 08/31/2019
Institution: University of Notre Dame
Sponsor: National Science Foundation
Award Number: 1544724
Abstract
Infrastructure networks are the foundation of the modern world. Their continued reliable and efficient function without exhausting finite natural resources is critical to the security, continued growth and technological advancement of the United States. Currently these systems are in a state of rapid flux due to a collision of trends such as growing populations, expanding integration of information technology, and increasing motivation to adopt sustainable practices. These trends beget both exciting potential benefits and dangerous challenges. Added sensing, communication, and computational capabilities hold the promise of increased reliability, efficiency and sustainability from "smart" infrastructure systems. At the same time, new technologies such as renewable energy resources in power systems, autonomous vehicles, and software defined communication networks, are testing the limits of current operational and market policies. The rapidly changing suite of system components can cause new, unforeseen interactions that can lead to instability, performance deterioration, or catastrophic failures. Achieving the full benefits of these systems will require a shift from the existing focus on approaches that analyze each aspect of interest in isolation, to a more holistic view that encompasses all of the relevant factors such as stability, robustness, performance and efficiency, and takes into account the presence of human participants.
This project provides a research roadmap to construct analysis, design and control tools that ensure the seamless integration of computational algorithms, physical components and human interactions in next generation infrastructure systems. Although there has been a great deal of research on stability questions in large scale distributed systems, there has been little effort directed toward questions of performance, robustness and efficiency in these systems, especially those with heterogeneous components and human participants. This research employs coupled oscillator systems as a common modeling framework to (i) characterize stability and performance of infrastructure systems, and (ii) develop distributed controllers that guarantee performance, efficiency and robustness by isolating disturbances and optimizing performance objectives. Practical solutions require that the theory be tightly integrated with the economic mechanisms necessary to incentivize users to enhance system stability, efficiency and reliability; therefore the work will also include the design of economic controls. In order to ground the mathematical foundations, theory and algorithms described above, the results will be applied to three target infrastructure networks where coupled oscillator models have played a foundational role in design and control: power, communication, and transportation systems. This approach allows the development of cross-cutting, fundamental principles that can be applied across problem specific boundaries and ensures that the research makes an impact on these specific infrastructure networks. This project will also incorporate concepts into existing undergraduate and graduate courses.
Performance Period: 09/01/2015 - 08/31/2019
Institution: Johns Hopkins University
Sponsor: National Science Foundation
Award Number: 1544771
Abstract
Cyber-physical systems of the near future will collaborate with humans. Such cognitive systems will need to understand what the humans are doing. They will need to interpret human action in real-time and predict the humans' immediate intention in complex, noisy and cluttered environments. This proposal puts forward a new architecture for cognitive cyber-physical systems that can understand complex human activities, and focuses specifically on manipulation activities. The proposed architecture, motivated by biological perception and control, consists of three layers. At the bottom layer are vision processes that detect, recognize and track humans, their body parts, objects, tools, and object geometry. The middle layer contains symbolic models of the human activity, and it assembles through a grammatical description the recognized signal components of the previous layer into a representation of the ongoing activity. Finally, at the top layer is the cognitive control, which decides which parts of the scene will be processed next and which algorithms will be applied where. It modulates the vision processes by fetching additional knowledge when needed, and directs the attention by controlling the active vision system to direct its sensors to specific places. Thus, the bottom layer is the perception, the middle layer is the cognition, and the top layer is the control. All layers have access to a knowledge base, built in offline processes, which contains the semantics about the actions.
The feasibility of the approach will be demonstrated through the development of a smart manufacturing system, called MONA LISA, which assists humans in assembly tasks. This system will monitor humans as they perform assembly task. It will recognize the assembly action and determine whether it is correct and will communicate to the human possible errors and suggest ways to proceed. The system will have advanced visual sensing and perception; action understanding grounded in robotics and human studies; semantic and procedural-like memory and reasoning, and a control module linking high-level reasoning and low-level perception for real time, reactive and proactive engagement with the human assembler.
The proposed work will bring new tools and methodology to the areas of sensor networks and robotics and is applicable, besides smart manufacturing, to a large variety of sectors and applications. Being able to analyze human behavior using vision sensors will have impact on many sectors, ranging from healthcare and advanced driver assistance to human robot collaboration. The project will also catalyze K-12 outreach, new courseware (undergraduate and graduate), publication and open-source software.
Performance Period: 09/01/2015 - 08/31/2018
Institution: University of Maryland at College Park
Sponsor: National Science Foundation
Award Number: 1544787
Abstract
Part 1: Upper-limb motor impairments arise from a wide range of clinical conditions including amputations, spinal cord injury, or stroke. Addressing lost hand function, therefore, is a major focus of rehabilitation interventions; and research in robotic hands and hand exoskeletons aimed at restoring fine motor control functions gained significant speed recently. Integration of these robots with neural control mechanisms is also an ongoing research direction. We will develop prosthetic and wearable hands controlled via nested control that seamlessly blends neural control based on human brain activity and dynamic control based on sensors on robots. These Hand Augmentation using Nested Decision (HAND) systems will also provide rudimentary tactile feedback to the user. The HAND design framework will contribute to the assistive and augmentative robotics field. The resulting technology will improve the quality of life for individuals with lost limb function. The project will help train engineers skilled in addressing multidisciplinary challenges. Through outreach activities, STEM careers will be promoted at the K-12 level, individuals from underrepresented groups in engineering will be recruited to engage in this research project, which will contribute to the diversity of the STEM workforce.
Part 2: The team previously introduced the concept of human-in-the-loop cyber-physical systems (HILCPS). Using the HILCPS hardware-software co-design and automatic synthesis infrastructure, we will develop prosthetic and wearable HAND systems that are robust to uncertainty in human intent inference from physiological signals. One challenge arises from the fact that the human and the cyber system jointly operate on the same physical element. Synthesis of networked real-time applications from algorithm design environments poses a framework challenge. These will be addressed by a tightly coupled optimal nested control strategy that relies on EEG-EMG-context fusion for human intent inference. Custom distributed embedded computational and robotic platforms will be built and iteratively refined. This work will enhance the HILCPS design framework, while simultaneously making novel contributions to body/brain interface technology and assistive/augmentative robot technology. Specifically we will (1) develop a theoretical EEG-EMG-context fusion framework for agile HILCPS application domains; (2) develop theory for and design novel control theoretic solutions to handle uncertainty, blend motion/force planning with high-level human intent and ambient intelligence to robustly execute daily manipulation activities; (3) further develop and refine the HILCPS domain-specific design framework to enable rapid deployment of HILCPS algorithms onto distributed embedded systems, empowering a new class of real-time algorithms that achieve distributed embedded sensing, analysis, and decision making; (4) develop new paradigms to replace, retrain or augment hand function via the prosthetic/wearable HAND by optimizing performance on a subject-by-subject basis.
Performance Period: 10/01/2015 - 09/30/2019
Institution: Northeastern University
Sponsor: National Science Foundation
Award Number: 1544895
Project URL
Project URL
Abstract
This proposal addresses the safety and security issues that arise when giving users remote-access to a multi-robot research test-bed, where mobile robots can coordinate their behaviors in a collaborative manner. Through a public interface, users are able to schedule, and subsequently upload, their own code and run their experiments, while being provided with the scientific data produced through the experiment. Such an open-access framework has the potential to significantly lowering the barriers to entry in robotics research and education, yet is inherently vulnerable from a safety and security point-of-view. This proposal aims at the development and definition of appropriate cyber-physical security notions, formal verification algorithms, and safety-critical, real-time control code for teams of mobile robots that will ultimately make such a system both useful and safe. On top of the research developments, this proposal contains a Transition to Practice component that will allow the system to become a highly usable, shared test-bed; one that can serve as a model for other open, remote-access test-beds.
Safety is of central importance to the successful realization of any remote-access test-bed and failure to enforce safety could result in injury in local operators and damaged equipment. To guarantee safe operation, while allowing users to test algorithms remotely, new science is required in the domain of safety-critical control. To address this need, the proposed work follows a three-pronged approach, namely (1) development and use of novel types of barrier certificates in the context of minimally invasive, optimization-based controllers with provable safety properties, (2) formal methods for verification of safety-critical control code for networked cyber-physical systems, and (3) novel methods for protecting against machine-to-machine cyber attacks. By bringing together ideas from multi-agent robotics, safety-critical control, formal verification, and cyber-security, this project will result in a unified and coherent approach to security in networked cyber-physical systems.
The potential impact of the resulting open-access multi-robot test-bed is significant along the research, education, and general outreach dimensions in that a future generation of roboticists at institutions across the country will have open and remote access to a world-class research facility, and educators at all levels will be able to run experiments on actual robots.
Performance Period: 10/01/2015 - 09/30/2019
Institution: Georgia Tech Research Corporation
Sponsor: National Science Foundation
Award Number: 1544332
Project URL
Abstract
This proposal addresses a multidisciplinary workshop with academic researchers, corporate technology providers, and agricultural producers to define research challenges and a research road-map to address the following major FEWS challenges:
1. Developing novel targeted remote sensing and in-situ sensing technology that can be practically fielded and used in food and water system management.
2. Developing novel integrated hydrology, soil, microclimate, and plant/agricultural production models that interact accurately and across traditional scales for understanding local, regional, and national impacts.
3. Turning this developing and pending FEWS data deluge into usable, actionable information for agricultural producers, local and regional decision makers, and citizens.
The workshop addresses the emerging issues in the food/water/energy system throughout the diverse geography of United States and over various crops and environmental conditions to better understand and model, and ultimate devise a solution for the changes to the FEWS system. The solution must be multifaceted, multidisciplinary in order to incorporate sensing, hydrology, visual analytics, and the potential for increased climate change. The workshop will generate a report and other artifacts that will lead to research into solving these challenges and have an impact on scientific fields including, sensing technology, hydrology, soil science, climate, data fusion, analysis, visualization, and data driven decision making, as well as agricultural production, local and regional economies, sustainability and planning.
Performance Period: 08/15/2015 - 07/31/2016
Institution: Purdue University
Sponsor: National Science Foundation
Award Number: 1541863
Abstract
Strategic decision-making for physical-world infrastructures is rapidly transitioning toward a pervasively cyber-enabled paradigm, in which human stakeholders and automation leverage the cyber-infrastructure at large (including on-line data sources, cloud computing, and handheld devices). This changing paradigm is leading to tight coupling of the cyber- infrastructure with multiple physical- world infrastructures, including air transportation and electric power systems. These management-coupled cyber- and physical- infrastructures (MCCPIs) are subject to complex threats from natural and sentient adversaries, which can enact complex propagative impacts across networked physical-, cyber-, and human elements.
We propose here to develop a modeling framework and tool suite for threat assessment for MCCPIs. The proposed modeling framework for MCCPIs has three aspects: 1) a tractable moment-linear modeling paradigm for the hybrid, stochastic, and multi-layer dynamics of MCCPIs; 2) models for sentient and natural adversaries, that capture their measurement and actuation capabilities in the cyber- and physical- worlds, intelligence, and trust-level; and 3) formal definitions for information security and vulnerability. The attendant tool suite will provide situational awareness of the propagative impacts of threats. Specifically, three functionalities termed Target, Feature, and Defend will be developed, which exploit topological characteristics of an MCCPI to evaluate and mitigate threat impacts. We will then pursue analyses that tie special infrastructure-network features to security/vulnerability. As a central case study, the framework and tools will be used for threat assessment and risk analysis of strategic air traffic management. Three canonical types of threats will be addressed: environmental-to-physical threats, cyber-physical co-threats, and human-in-the-loop threats. This case study will include development and deployment of software decision aids for managing man-made disturbances to the air traffic system.
Performance Period: 09/15/2015 - 08/31/2019
Institution: Missouri University of Science and Technology
Sponsor: National Science Foundation
Award Number: 1545050
Abstract
Performance Period: 09/01/2015 - 08/31/2019
Institution: Missouri Science and Technology
Sponsor: National Science Foundation
Award Number: 1545037
Abstract
Inadequate system understanding and inadequate situational awareness have caused large-scale power outages in the past. With the increased reliance on variable energy supply sources, system understanding and situational awareness of a complex energy system become more challenging. This project leverages the power of big data analytics to directly improve system understanding and situational awareness. The research provides the methodology for detecting anomalous events in real-time, and therefore allow control centers to take appropriate control actions before minor events develop into major blackouts. The significance for the society and for the power industry is profound. Energy providers will be able to prevent large-scale power outages and reduce revenue losses, and customers will benefit from reliable energy delivery with service guarantees. Students, including women and underrepresented groups, will be trained for the future workforce in this area.
The project includes four major thrusts: 1) real-time anomaly detection from measurement data; 2) real-time event diagnosis and interpretation of changes in the state of the network; 3) real-time optimal control of the power grid; 4) scientific foundations underpinning cyber-physical systems. The major outcome of this project is practical solutions to event or fault detection and diagnosis in the power grid, as well as prediction and prevention of large-scale power outages.
Performance Period: 09/15/2015 - 10/31/2016
Institution: Missouri University of Science and Technology
Sponsor: National Science Foundation
Award Number: 1545063