The formalization of system engineering models and approaches.
Traditionally, buildings have been viewed as mere energy consumers; however, with the new power grid infrastructure and distributed energy resources, buildings can not only consume energy, but they can also output energy. As a result, this project removes traditional boundaries between buildings in the same cluster or between the cluster and power grids, transforming individual smart buildings into NetZero building clusters enabled by cyber-support tools. In this research, a synergistic decision framework is established for temporally, spatially distributed building clusters to work as an adaptive and robust system within a smart grid. The framework includes innovative algorithms and tools for building energy modeling, intelligent data fusion, decentralized decisions and adaptive decisions to address theoretical and practical challenges in next-generation building systems. The research develops cyber-physical engineering tools for demand side load management which has been identified as a major challenge by energy industries. It fundamentally transforms the current centralized and uni-directional power distribution business model to a decentralized and multi-directional power sharing and distribution business model, reducing overall energy consumption and allowing for optimal decisions in changing operation environments. Education and outreach efforts include developing novel educational modules disseminated at the K-12 levels and through the ASEE eGFI repository. Further educational impact occurs through integration with multiple undergraduate and graduate courses at each institution, and with community service groups. Impact is also expanded to the broader energy industry and the operation of healthcare delivery and urban transportation systems through our industry collaborations. http://swag.engineering.asu.edu/ Traditionally, buildings have been viewed as mere energy consumers; however, with the new power grid infrastructure and distributed energy resources, buildings can not only consume energy, but they can also output energy. As a result, this project removes traditional boundaries between buildings in the same cluster or between the cluster and power grids, transforming individual smart buildings into NetZero building clusters enabled by cyber-support tools. In this research, a synergistic decision framework is established for temporally, spatially distributed building clusters to work as an adaptive and robust system within a smart grid. The framework includes innovative algorithms and tools for building energy modeling, intelligent data fusion, decentralized decisions and adaptive decisions to address theoretical and practical challenges in next-generation building systems. The research develops cyber-physical engineering tools for demand side load management which has been identified as a major challenge by energy industries. It fundamentally transforms the current centralized and uni-directional power distribution business model to a decentralized and multi-directional power sharing and distribution business model, reducing overall energy consumption and allowing for optimal decisions in changing operation environments. Education and outreach efforts include developing novel educational modules disseminated at the K-12 levels and through the ASEE eGFI repository. Further educational impact occurs through integration with multiple undergraduate and graduate courses at each institution, and with community service groups. Impact is also expanded to the broader energy industry and the operation of healthcare delivery and urban transportation systems through our industry collaborations. http://swag.engineering.asu.edu/ Traditionally, buildings have been viewed as mere energy consumers; however, with the new power grid infrastructure and distributed energy resources, buildings can not only consume energy, but they can also output energy. As a result, this project removes traditional boundaries between buildings in the same cluster or between the cluster and power grids, transforming individual smart buildings into NetZero building clusters enabled by cyber-support tools. In this research, a synergistic decision framework is established for temporally, spatially distributed building clusters to work as an adaptive and robust system within a smart grid. The framework includes innovative algorithms and tools for building energy modeling, intelligent data fusion, decentralized decisions and adaptive decisions to address theoretical and practical challenges in next-generation building systems. The research develops cyber-physical engineering tools for demand side load management which has been identified as a major challenge by energy industries. It fundamentally transforms the current centralized and uni-directional power distribution business model to a decentralized and multi-directional power sharing and distribution business model, reducing overall energy consumption and allowing for optimal decisions in changing operation environments. Education and outreach efforts include developing novel educational modules disseminated at the K-12 levels and through the ASEE eGFI repository. Further educational impact occurs through integration with multiple undergraduate and graduate courses at each institution, and with community service groups. Impact is also expanded to the broader energy industry and the operation of healthcare delivery and urban transportation systems through our industry collaborations.
Off
SUNY at Buffalo
-
National Science Foundation
Kemper Lewis Submitted by Kemper Lewis on December 18th, 2015
This CPS Frontiers project addresses highly dynamic Cyber-Physical Systems (CPSs), understood as systems where a computing delay of a few milliseconds or an incorrectly computed response to a disturbance can lead to catastrophic consequences. Such is the case of cars losing traction when cornering at high speed, unmanned air vehicles performing critical maneuvers such as landing, or disaster and rescue response bipedal robots rushing through the rubble to collect information or save human lives. The preceding examples currently share a common element: the design of their control software is made possible by extensive experience, laborious testing and fine tuning of parameters, and yet, the resulting closed-loop system has no formal guarantees of meeting specifications. The vision of the project is to provide a methodology that allows for complex and dynamic CPSs to meet real-world requirements in an efficient and robust way through the formal synthesis of control software. The research is developing a formal framework for correct-by-construction control software synthesis for highly dynamic CPSs with broad applications to automotive safety systems, prostheses, exoskeletons, aerospace systems, manufacturing, and legged robotics. The design methodology developed here will improve the competitiveness of segments of industry that require a tight integration between hardware and highly advanced control software such as: automotive (dynamic stability and control), aerospace (UAVs), medical (prosthetics, orthotics, and exoskeleton design) and robotics (legged locomotion). To enhance the impact of these efforts, the PIs are developing interdisciplinary teaching materials to be made freely available and disseminating their work to a broad audience.
Off
Massachusetts Institute of Technology
-
National Science Foundation
Asuman Ozdaglar
Saurabh Amin Submitted by Saurabh Amin on December 18th, 2015
Continuous real-time tracking of the eye and field-of-view of an individual is profoundly important to understanding how humans perceive and interact with the physical world. This work advances both the technology and engineering of cyber-physical systems by designing an innovative paradigm involving next-generation computational eyeglasses that interact with a user's mobile phone to provide the capability for real-time visual context sensing and inference. This research integrates novel research into low-power embedded systems, image representation, image processing and machine learning, and mobile sensing and inference, to advance the state-of-art in continuous sensing for CPS applications. The activity addresses several fundamental research challenges including: 1) design of novel, highly integrated, computational eyeglasses for tracking eye movements, the visual field of a user, and head movement patterns, all in real-time; 2) a unified compressive signal processing framework that optimizes sensing and estimation, while enabling re-targeting of the device to perform a broad range of tasks depending on the needs of an application; 3) design of a novel real-time visual context sensing system that extracts high-level contexts of interest from compressed data representations; and 4) a layer of intelligence that combines contexts extracted from the computational eyeglass together with contexts obtained from the mobile phone to improve energy-efficiency and sensing accuracy. This technology can revolutionize a range of disciplines including transportation, healthcare, behavioral science and market research. Continuous monitoring of the eye and field-of-view of an individual can enable detection of hazardous behaviors such as drowsiness while driving, mental health issues such as schizophrenia, addictive behavior and substance abuse, neurological disease progression, head injuries, and others. The research provides the foundations for such applications through the design of a prototype platform together with real-time sensor processing algorithms, and making these systems available through open source venues for broader use. Outreach for this project includes demonstrations of the device at science fairs for high-school students, and integration of the platform into undergraduate and graduate courses.
Off
University of Michigan Ann Arbor
-
National Science Foundation
Submitted by Dutta Prabal on December 18th, 2015
The project aims at making cities "smarter" by engineering processes such as traffic control, efficient parking services, and new urban activities such as recharging electric vehicles. To that end, the research will study the components needed to establish a Cyber-Physical Infrastructure for urban environments and address fundamental problems that involve data collection, resource allocation, real-time decision making, safety, and security. Accordingly, the research is organized along two main directions: (i) Sensing and data acquisition using a new mobile sensor network paradigm designed for urban environments; and (ii) Decision Support for the "Smart City" relying on formal verification and certification methods coupled with innovative dynamic optimization techniques used for decision making and resource allocation. The work will bring together and build upon methodological advances in optimization under uncertainty, computer simulation, discrete event and hybrid systems, control and games, system security, and formal verification and safety. Target applications include: a "Smart Parking" system where parking spaces are optimally assigned and reserved, and vehicular traffic regulation. The research has the potential of revolutionizing the way cities are viewed: from a passive living and working environment to a highly dynamic one with new ways to deal with transportation, energy, and safety. Teaming up with stakeholders in the Boston Back Bay neighborhood, the City of Boston, and private industry, the research team expects to establish new collaborative models between universities and urban groups for cutting-edge research embedded in the deployment of an exciting technological, economic, and sociological development.
Off
University of Connecticut
-
National Science Foundation
Submitted by Robert Gao on December 18th, 2015
This NSF Cyber-Physical Systems (CPS) Frontiers project "Foundations Of Resilient CybEr-physical Systems (FORCES)" focuses on the resilient design of large-scale networked CPS systems that directly interface with humans. FORCES aims to pr ovide comprehensive tools that allow the CPS designers and operators to combine resilient control (RC) algorithms with economic incentive (EI) schemes. Scientific Contributions The project is developing RC tools to withstand a wide-range of attacks and faults; learning and control algorithms which integrate human actions with spatio-temporal and hybrid dynamics of networked CPS systems; and model-based design to assure semantically consistent representations across all branches of the project. Operations of networked CPS systems naturally depend on the systemic social institutions and the individual deployment choices of the humans who use and operate them. The presence of incomplete and asymmetric information among these actors leads to a gap between the individually and socially optimal equilibrium resiliency levels. The project is developing EI schemes to reduce this gap. The core contributions of the FORCES team, which includes experts in control systems, game theory, and mechanism design, are the foundations for the co-design of RC and EI schemes and technological tools for implementing them. Expected Impacts Resilient CPS infrastructure is a critical National Asset. FORCES is contributing to the development of new Science of CPS by being the first project that integrates networked control with game theoretic tools and the economic incentives of human decision makers for resilient CPS design and operation. The FORCES integrated co-design philosophy is being validated on two CPS domains: electric power distribution and consumption, and transportation networks. These design prototypes are being tested in real world scenarios. The team's research efforts are being complemented by educational offerings on resilient CPS targeted to a large and diverse audience.
Off
University of Michigan Ann Arbor
-
National Science Foundation
Submitted by Demosthenis Teneketzis on December 18th, 2015
This NSF Cyber-Physical Systems (CPS) Frontiers project "Foundations Of Resilient CybEr-physical Systems (FORCES)" focuses on the resilient design of large-scale networked CPS systems that directly interface with humans. FORCES aims to pr ovide comprehensive tools that allow the CPS designers and operators to combine resilient control (RC) algorithms with economic incentive (EI) schemes. Scientific Contributions The project is developing RC tools to withstand a wide-range of attacks and faults; learning and control algorithms which integrate human actions with spatio-temporal and hybrid dynamics of networked CPS systems; and model-based design to assure semantically consistent representations across all branches of the project. Operations of networked CPS systems naturally depend on the systemic social institutions and the individual deployment choices of the humans who use and operate them. The presence of incomplete and asymmetric information among these actors leads to a gap between the individually and socially optimal equilibrium resiliency levels. The project is developing EI schemes to reduce this gap. The core contributions of the FORCES team, which includes experts in control systems, game theory, and mechanism design, are the foundations for the co-design of RC and EI schemes and technological tools for implementing them. Expected Impacts Resilient CPS infrastructure is a critical National Asset. FORCES is contributing to the development of new Science of CPS by being the first project that integrates networked control with game theoretic tools and the economic incentives of human decision makers for resilient CPS design and operation. The FORCES integrated co-design philosophy is being validated on two CPS domains: electric power distribution and consumption, and transportation networks. These design prototypes are being tested in real world scenarios. The team's research efforts are being complemented by educational offerings on resilient CPS targeted to a large and diverse audience.
Off
Vanderbilt University
-
National Science Foundaiton
Xenofon  Koutsoukos Submitted by Xenofon Koutsoukos on December 18th, 2015
The goal of this research is to develop fundamental theory, efficient algorithms, and realistic experiments for the analysis and design of safety-critical cyber-physical transportation systems with human operators. The research focuses on preventing crashes between automobiles at road intersections, since these account for about 40% of overall vehicle crashes. Specifically, the main objective of this work is to design provably safe driver-assist systems that understand driver's intentions and provide warnings/overrides to prevent collisions. In order to pursue this goal, hybrid automata models for the driver-vehicles-intersection system, incorporating driver behavior and performance as an integral part, are derived from human-factors experiments. A partial order of these hybrid automata models is constructed, according to confidence levels on the model parameters. The driver-assist design problem is then formulated as a set of partially ordered hybrid differential games with imperfect information, in which games are ordered according to parameter confidence levels. The resulting designs are validated experimentally in a driving simulator and in large-scale computer simulations. This research leverages the potential of embedded control and communication technologies to prevent crashes at traffic intersections, by enabling networks of smart vehicles to cooperate with each other, with the surrounding infrastructure, and with their drivers to make transportation safer, more enjoyable, and more efficient. The work is based on a collaboration among researchers in formal methods, autonomous control, and human factors who are studying realistic and provably correct warning/override algorithms that can be readily transitioned to production vehicles.
Off
University of Michigan Ann Arbor
-
National Science Foundation
Paul Green Submitted by Paul Green on December 18th, 2015
The national transmission networks that deliver high voltage electric power underpin our society and are central to the ongoing transformation of the American energy infrastructure. Transmission networks are very large and complicated engineering systems, and "keeping the lights on" as the transformation of the American energy infrastructure proceeds is a fundamental engineering challenge involving both the physical aspects of the equipment and the cyber aspects of the controls, communications, and computers that run the system. The project develops new principles of cyber-physical engineering by focusing on instabilities of electric power networks that can cause blackouts. It proposes novel approaches to analyze these instabilities and to design cyber-physical control methods to monitor, detect, and mitigate them. The controls must perform robustly in the presence of variability and uncertainty in electric generation, loads, communications, and equipment status, and during abnormal states caused by natural faults or malicious attacks. The research produces cyber-physical engineering methodologies that specifically help to mitigate power system blackouts and more generally show the way forward in designing robust cyber-physical systems in environments characterized by rich dynamics and uncertainty. Education and outreach efforts involve students at high school, undergraduate, and graduate levels, as well as dissemination of results to the public and the engineering and applied science communities in industry, government and universities.
Off
Iowa State University
-
National Science Foundation
Ian Dobson Submitted by Ian Dobson on December 18th, 2015
This project, investigating formal languages as a general methodology for task transfer between distinct cyber-physical systems such as humans and robots, aims to expand the science of cyber physical systems by developing Motion Grammars that will enable task transfer between distinct systems. Formal languages are tools for encoding, describing and transferring structured knowledge. In natural language, the latter process is called communication. Similarly, we will develop a formal language through which arbitrary cyber-physical systems communicate tasks via structured actions. This investigation of Motion Grammars will contribute to the science of human cognition and the engineering of cyber-physical algorithms. By observing human activities during manipulation we will develop a novel class of hybrid control algorithms based on linguistic representations of task execution. These algorithms will broaden the capabilities of man-made systems and provide the infrastructure for motion transfer between humans, robots and broader systems in a generic context. Furthermore, the representation in a rigorous grammatical context will enable formal verification and validation in future work. Broader Impacts: The proposed research has direct applications to new solutions for manufacturing, medical treatments such as surgery, logistics and food processing. In turn, each of these areas has a significant impact on the efficiency and convenience of our daily lives. The PIs serve as coordinators of graduate/undergraduate programs and mentors to community schools. In order to guarantee that women and minorities have a significant role in the research, the PIs will annually invite K-12 students from Atlanta schools with primarily African American populations to the laboratories. One-day robot classes will be conducted that engage students in the excitement of hands-on science by interactively using lab equipment to transfer their manipulation skills to a robot arm.
Off
Georgia Tech Research Corporation
-
National Science Foundation
Michael Stilman Submitted by Michael Stilman on December 18th, 2015
CALL FOR PAPERS 9th International Workshop on Computing with Terms and Graphs  (TERMGRAPH  2016) a Satellite Event of ETAPS 2016 Background
Submitted by Anonymous on December 17th, 2015
Subscribe to Modeling